Calculus > QUESTIONS & ANSWERS > Chapter 5 INTEGRALS. Work and Answers (All)

Chapter 5 INTEGRALS. Work and Answers

Document Content and Description Below

5.1 Areas and Distances 1. (a) Since  is decreasing , we can obtain a lower estimate by using right endpoints. We are instructed to use five rectangles, so  = 5. 5 = 5 =1 (�... ��)∆ ∆ =  −  = 105− 0 = 2 = (1) · 2 + (2) · 2 + (3) · 2 + (4) · 2 + (5) · 2 = 2[(2) + (4) + (6) + (8) + (10)] ≈ 2(32 + 18 + 08 + 02 + 0) = 2(6) = 12 Since  is decreasing , we can obtain an upper estimate by using left endpoints. 5 = 5 =1 (−1)∆ = (0) · 2 + (1) · 2 + (2) · 2 + (3) · 2 + (4) · 2 = 2[(0) + (2) + (4) + (6) + (8)] ≈ 2(5 + 32 + 18 + 08 + 02) = 2(11) = 22 (b) 10 = 10  =1 ()∆ ∆ = 1010 − 0 = 1 = 1[(1) + (2) + · · · + (10)] = (1) + (2) + · · · + (10) ≈ 4 + 32 + 25 + 18 + 13 + 08 + 05 + 02 + 01 + 0 = 144 10 = 10  =1 (−1)∆ = (0) + (1) + · · · + (9) = 10 + 1 · (0) − 1 · (10) subtract rightmost lower rectangle add leftmost upper rectangle,  = 144 + 5 − 0 = 194 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 1 NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.2 ¤ CHAPTER 5 INTEGRALS 2. (a) (i) 6 = 6 =1 (−1)∆ [∆ = 126− 0 = 2] = 2[(0) + (1) + (2) + (3) + (4) + (5)] = 2[(0) + (2) + (4) + (6) + (8) + (10)] ≈ 2(9 + 88 + 82 + 73 + 59 + 41) = 2(433) = 866 (ii) 6 = 6 + 2 · (12) − 2 · (0) ≈ 866 + 2(1) − 2(9) = 706 [Add area of rightmost lower rectangle and subtract area of leftmost upper rectangle.] (iii) 6 = 6 =1 ()∆ = 2[(1) + (3) + (5) + (7) + (9) + (11)] ≈ 2(89 + 85 + 78 + 66 + 51 + 28) = 2(397) = 794 (b) Since  is decreasing, we obtain an overestimate by using left endpoints; that is, 6. (c) Since  is decreasing, we obtain an underestimate by using right endpoints; that is, 6. (d) 6 gives the best estimate, since the area of each rectangle appears to be closer to the true area than the overestimates and underestimates in 6 and 6. 3. (a) 4 = 4 =1 ()∆ ∆ = 2 −4 1 = 1 4 = =1 4 ()∆ = [(1) + (2) + (3) + (4)] ∆ = 514 + 614 + 714 + 81 4 14 =  4 5 + 2 3 + 4 7 + 1 2 1 4 ≈ 06345 Since  is decreasing on [12], an underestimate is obtained by using the right endpoint approximation, 4. (b) 4 = 4 =1 (−1)∆ = =1 4 (−1) ∆ = [(0) + (1) + (2) + (3)] ∆ = 11 + 514 + 614 + 714 1 4 = 1 + 4 5 + 2 3 + 4 7 1 4 ≈ 07595 4 is an overestimate. Alternatively, we could just add the area of the leftmost upper rectangle and subtract the area of the rightmost lower rectangle; that is, 4 = 4 + (1) · 1 4 − (2) · 1 4. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.1 AREAS AND DISTANCES ¤ 3 4. (a) 4 = 4 =1 () ∆ ∆ = 24− 0 = 8  = =1 4 () ∆ = [(1) + (2) + (3) + (4)] ∆ = sin 8 + sin 28 + sin 38 + sin 48 8 ≈ 11835 Since  is increasing on 0 2 , 4 is an overestimate. (b) 4 = 4 =1 (−1) ∆ = =1 4 (−1) ∆ = [(0) + (1) + (2) + (3)] ∆ = sin 0 + sin 8 + sin 28 + sin 38 8 ≈ 07908 Since  is increasing on 0 2 , 4 is an underestimate. 5. (a) () = 1 + 2 and ∆ = 2 − (−1) 3 = 1 ⇒ 3 = 1 · (0) + 1 · (1) + 1 · (2) = 1 · 1 + 1 · 2 + 1 · 5 = 8. ∆ = 2 − (−1) 6 = 05 ⇒ 6 = 05[(−05) + (0) + (05) + (1) + (15) + (2)] = 05(125 + 1 + 125 + 2 + 325 + 5) = 05(1375) = 6875 (b) 3 = 1 · (−1) + 1 · (0) + 1 · (1) = 1 · 2 + 1 · 1 + 1 · 2 = 5 6 = 05[(−1) + (−05) + (0) + (05) + (1) + (15)] = 05(2 + 125 + 1 + 125 + 2 + 325) = 05(1075) = 5375 (c) 3 = 1 · (−05) + 1 · (05) + 1 · (15) = 1 · 125 + 1 · 125 + 1 · 325 = 575 6 = 05[(−075) + (−025) + (025) + (075) + (125) + (175)] = 05(15625 + 10625 + 10625 + 15625 + 25625 + 40625) = 05(11875) = 59375 (d) 6 appears to be the best estimate. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.4 ¤ CHAPTER 5 INTEGRALS 6. (a) (b) () =  − 2ln and ∆ = 5 − 1 4 = 1 ⇒ (i) 4 = 1 · (2) + 1 · (3) + 1 · (4) + 1 · (5) = (2 − 2ln2) + (3 − 2ln3) + (4 − 2ln4) + (5 − 2ln5) ≈ 4425 (ii) 4 = 1 · (15) + 1 · (25) + 1 · (35) + 1 · (45) = (15 − 2ln 15) + (25 − 2ln25) + (35 − 2ln35) + (45 − 2ln45) ≈ 3843 (c) (i) 8 = 1 2[(15) + (2) + · · · + (5)] = 1 2 [(15 − 2ln15) + (2 − 2ln2) + · · · + (5 − 2ln5)] ≈ 4134 (ii) 8 = 1 2[(125) + (175) + · · · + (475)] = 1 2 [(125 − 2ln125) + (175 − 2ln175) + · · · + (475 − 2ln475)] ≈ 3889 7. () = 2 + sin, 0 ≤  ≤ , ∆ = .  = 2: The maximum values of  on both subintervals occur at  = 2 , so upper sum =  2  · 2 +  2  · 2 = 3 · 2 + 3 · 2 = 3 ≈ 942.2 The minimum values of  on the subintervals occur at  = 0 and  = , so lower sum = (0) · 2 + () · 2 = 2 · 2 + 2 · 2 = 2 ≈ 628. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.1 AREAS AND DISTANCES ¤ 5  = 4: upper sum =  4  +  2  +  2  +  34  4  = 2 + 1 2√2 + (2 + 1) + (2 + 1) + 2 + 1 2√2 4  = 10 + √2 4  ≈ 896 lower sum = (0) +  4  +  34  + () 4  = (2 + 0) + 2 + 1 2√2 + 2 + 1 2√2 + (2 + 0) 4  = 8 + √2 4  ≈ 739  = 8: upper sum =  8  +  4  +  38  +  2  +  2  +  58  +  34  +  78  8  ≈ 865 lower sum = (0) +  8  +  4  +  38  +  58  +  34  +  78  + () 8  ≈ 786 8. () = 1 + 2, −1 ≤  ≤ 1, ∆ = 2.  = 3: upper sum = (−1) +  1 3  + (1) 2 3  = 2 + 10 9 + 2 2 3  = 92 27 ≈ 341 lower sum = − 1 3  + (0) +  1 3  2 3  =  10 9 + 1 + 10 9  2 3  = 58 27 ≈ 215  = 4: upper sum = (−1) + − 1 2  +  1 2  + (1) 2 4  = 2 + 5 4 + 5 4 + 2 1 2  = 13 4 = 325 lower sum = − 1 2  + (0) + (0) +  1 2  2 4  =  5 4 + 1 + 1 + 5 4  1 2  = 9 4 = 225 9. Here is one possible algorithm (ordered sequence of operations) for calculating the sums: 1 Let SUM = 0, X_MIN = 0, X_MAX = 1, N = 10 (depending on which sum we are calculating), DELTA_X = (X_MAX - X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X. 2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT  X_MAX. 2a Add (RIGHT_ENDPOINT)^4 to SUM. Add DELTA_X to RIGHT_ENDPOINT. At the end of this procedure, (DELTA_X)·(SUM) is equal to the answer we are looking for. We find that 10 = 1 10 10   =1 10  4 ≈ 02533, 30 = 30 1 30 =1 30  4 ≈ 02170, 50 = 50 1 50 =1 50  4 ≈ 02101 and °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.6 ¤ CHAPTER 5 INTEGRALS 100 = 1 100 100  =1 100  4 ≈ 02050. It appears that the exact area is 02. The following display shows the program SUMRIGHT and its output from a TI-83/4 Plus calculator. To generalize the program, we have input (rather than assign) values for Xmin, Xmax, and N. Also, the function, 4, is assigned to Y1, enabling us to evaluate any right sum merely by changing Y1 and running the program. 10. We can use the algorithm from Exercise 9 with X_MIN = 0, X_MAX = 2, and cos(RIGHT_ENDPOINT) instead of (RIGHT_ENDPOINT)^4 in step 2a. We find that 10 = 2 10 10  =1 cos20   ≈ 09194, 30 =  302 30 =1cos60   ≈ 09736, and 50 = 2 50 50  =1 cos100   ≈ 09842, and 100 =  1002 100 =1cos200   ≈ 09921. It appears that the exact area is 1. 11. In Maple, we have to perform a number of steps before getting a numerical answer. After loading the student package [command: with(student);] we use the command left_sum:=leftsum(1/(xˆ2+1),x=0..1,10 [or 30, or 50]); which gives us the expression in summation notation. To get a numerical approximation to the sum, we use evalf(left_sum);. Mathematica does not have a special command for these sums, so we must type them in manually. For example, the first left sum is given by (1/10)*Sum[1/(((i-1)/10)ˆ2+1)],{i,1,10}], and we use the N command on the resulting output to get a numerical approximation. In Derive, we use the LEFT_RIEMANN command to get the left sums, but must define the right sums ourselves. (We can define a new function using LEFT_RIEMANN with  ranging from 1 to  instead of from 0 to  − 1.) (a) With () = 1 2 + 1, 0 ≤  ≤ 1, the left sums are of the form  = 1 =1   −112 + 1. Specifically, 10 ≈ 08100, 30 ≈ 07937, and 50 ≈ 07904. The right sums are of the form  = 1   =1 1   2 + 1. Specifically, 10 ≈ 07600, 30 ≈ 07770, and 50 ≈ 07804. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.1 AREAS AND DISTANCES ¤ 7 (b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the graphs. left endpoints,  = 10 left endpoints,  = 30 left endpoints,  = 50 right endpoints,  = 10 right endpoints,  = 30 right endpoints,  = 50 (c) We know that since  = 1(2 + 1) is a decreasing function on (01), all of the left sums are larger than the actual area, and all of the right sums are smaller than the actual area. Since the left sum with  = 50 is about 07904  0791 and the right sum with  = 50 is about 07804  0780, we conclude that 0780  50  exact area  50  0791, so the exact area is between 0780 and 0791. 12. See the solution to Exercise 11 for the CAS commands for evaluating the sums. (a) With () = ln, 1 ≤  ≤ 4, the left sums are of the form  = 3   =1 ln1 + 3(− 1). In particular, 10 ≈ 23316, 30 ≈ 24752, and 50 ≈ 25034. The right sums are of the form  = 3   =1 ln1 + 3. In particular, 10 ≈ 27475, 30 ≈ 26139, and 50 ≈ 25865. (b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the graphs. left endpoints,  = 10 left endpoints,  = 30 left endpoints,  = 50 right endpoints,  = 10 right endpoints,  = 30 right endpoints,  = 50 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.8 ¤ CHAPTER 5 INTEGRALS (c) We know that since  = ln is an increasing function on (1 4), all of the left sums are smaller than the actual area, and all of the right sums are larger than the actual area. Since the left sum with  = 50 is about 2503  250 and the right sum with  = 50 is about 2587  259, we conclude that 250  50  exact area  50  259, so the exact area is between 250 and 259. 13. Since  is an increasing function, 6 will give us a lower estimate and 6 will give us an upper estimate. 6 = (0 fts)(05 s) + (62)(05) + (108)(05) + (149)(05) + (181)(05) + (194)(05) = 05(694) = 347 ft 6 = 05(62 + 108 + 149 + 181 + 194 + 202) = 05(896) = 448 ft 14. (a) The velocities are given with units mih, so we must convert the 10-second intervals to hours: 10 seconds = 10 seconds 3600 secondsh = 1 360 h distance ≈ 6 = (1829 mih) 360 1 h + (1680) 360 1  + (1066) 360 1  + (998) 360 1  + (1245) 360 1  + (1761) 360 1  = 8579 360 ≈ 2383 miles (b) Distance ≈ 6 =  360 1 (1680 + 1066 + 998 + 1245 + 1761 + 1756) = 850 3606 ≈ 2363 miles (c) The velocity is neither increasing nor decreasing on the given interval, so the estimates in parts (a) and (b) are neither upper nor lower estimates. 15. Lower estimate for oil leakage: 5 = (76 + 68 + 62 + 57 + 53)(2) = (316)(2) = 632 L. Upper estimate for oil leakage: 5 = (87 + 76 + 68 + 62 + 57)(2) = (35)(2) = 70 L. 16. We can find an upper estimate by using the final velocity for each time interval. Thus, the distance  traveled after 62 seconds can be approximated by  = 6 =1 () ∆ = (185 fts)(10 s) + 319 · 5 + 447 · 5 + 742 · 12 + 1325 · 27 + 1445 · 3 = 54,694 ft 17. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an underestimate. We will use 6 to get an estimate. ∆ = 1, so 6 = 1[(05) + (15) + (25) + (35) + (45) + (55)] ≈ 55 + 40 + 28 + 18 + 10 + 4 = 155 ft For a very rough check on the above calculation, we can draw a line from (070) to (60) and calculate the area of the triangle: 1 2(70)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable. 18. For an increasing function, using left endpoints gives us an underestimate and using right endpoints results in an overestimate. We will use 6 to get an estimate. ∆ = 306− 0 = 5 s = 3600 5 h = 720 1 h. 6 = 720 1 [(25) + (75) + (125) + (175) + (225) + (275)] = 1 720(3125 + 66 + 88 + 1035 + 11375 + 11925) = 720 1 (52175) ≈ 0725 km For a very rough check on the above calculation, we can draw a line from (00) to (30 120) and calculate the area of the triangle: 1 2(30)(120) = 1800. Divide by 3600 to get 05, which is clearly an underestimate, making our midpoint estimate of 0725 seem reasonable. Of course, answers will vary due to different readings of the graph. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.1 AREAS AND DISTANCES ¤ 9 19. () = −( − 21)( + 1) and ∆ = 126− 0 = 2 6 = 2 · (1) + 2 · (3) + 2 · (5) + 2 · (7) + 2 · (9) + 2 · (11) = 2 · 40 + 2 · 216 + 2 · 480 + 2 · 784 + 2 · 1080 + 2 · 1320 = 7840 (infected cellsmL) · days Thus, the total amount of infection needed to develop symptoms of measles is about 7840 infected cells per mL of blood plasma. 20. (a) Use ∆ = 14 days. The number of people who died of SARS in Singapore between March 1 and May 24, 2003, using left endpoints is 6 = 14(00079 + 00638 + 01944 + 04435 + 05620 + 04630) = 14(17346) = 242844 ≈ 24 people Using right endpoints, 6 = 14(00638 + 01944 + 04435 + 05620 + 04630 + 02897) = 14(20164) = 282296 ≈ 28 people (b) Let  be the number of days since March 1, 2003, () be the number of deaths per day on day , and the graph of  = () be a reasonable continuous function on the interval [0 84]. Then the number of SARS deaths from  =  to  =  is approximately equal to the area under the curve  = () from  =  to  = . 21. () = 2 2 + 1, 1 ≤  ≤ 3. ∆ = (3 − 1) = 2 and  = 1 + ∆ = 1 + 2.  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =1 2(1 + 2) (1 + 2)2 + 1 · 2  . 22. () = 2 + √1 + 2, 4 ≤  ≤ 7. ∆ = (7 − 4) = 3 and  = 4 +  ∆ = 4 + 3.  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =1 (4 + 3)2 + 1 + 2(4 + 3) · 3 . 23. () = √sin, 0 ≤  ≤ . ∆ = ( − 0) =  and  = 0 +  ∆ = .  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =1 sin() ·   . 24. lim →∞  =1 3  1 + 3 can be interpreted as the area of the region lying under the graph of  = √1 +  on the interval [03], since for  = √1 +  on [03] with ∆ = 3 − 0  = 3  ,  = 0 +  ∆ = 3  , and ∗  = , the expression for the area is  = lim →∞  =1 (∗  )∆ = lim →∞  =1 1 + 3 3 . Note that this answer is not unique. We could use  = √ on [14] or, in general,  = √ −  on [ + 1  + 4], where  is any real number. 25. lim →∞  =1  4 tan  4 can be interpreted as the area of the region lying under the graph of  = tan on the interval 0 4 , since for  = tan on 0 4  with ∆ = 4 − 0  =  4 ,  = 0 +  ∆ =  4 , and ∗  = , the expression for the area is  = lim →∞  =1  (∗  )∆ = lim →∞  =1 tan4 4 . Note that this answer is not unique, since the expression for the area is the same for the function  = tan( − ) on the interval   + 4 , where  is any integer. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.10 ¤ CHAPTER 5 INTEGRALS 26. (a) ∆ = 1 − 0  = 1  and  = 0 +  ∆ =   .  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =1 3 · 1 . (b) lim →∞  =1 3 3 · 1  = lim →∞ 1 4  =1 3 = lim →∞ 1 4 (2+ 1)2 = lim →∞ (4+ 1) 2 2 = 14 lim →∞1 + 1 2 = 14 27. (a) Since  is an increasing function,  is an underestimate of  [lower sum] and  is an overestimate of  [upper sum]. Thus, , , and  are related by the inequality     . (b)  = (1)∆ + (2)∆ + · · · + ()∆  = (0)∆ + (1)∆ + · · · + (−1)∆  −  = ()∆ − (0)∆ = ∆[() − (0)] =  −   [() − ()] In the diagram,  −  is the sum of the areas of the shaded rectangles. By sliding the shaded rectangles to the left so that they stack on top of the leftmost shaded rectangle, we form a rectangle of height () − () and width  −   . (c)   , so  −    − ; that is,  −    −   [() − ()]. 28.  −    −   [() − ()] = 3 − 1  [(3) − (1)] = 2  (3 − ) Solving 2  (3 − )  00001 for  gives us 2(3 − )  00001 ⇒   2(3 − ) 00001 ⇒   3473451. Thus, a value of  that assures us that  −   00001 is  = 347346. [This is not the least value of .] 29. (a)  = () = 5. ∆ = 2 − 0  = 2  and  = 0 +  ∆ = 2  .  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =125 · 2 = lim →∞ =1  32 55 · 2 = lim →∞ 646 =1  5. (b)  =1 5 CAS = 2( + 1)222 + 2 − 1 12 (c) lim →∞ 64 6 · 2( + 1)222 + 2 − 1 12 = 64 12 lim →∞ 2 + 2 + 122 + 2 − 1 2 · 2 = 16 3 lim →∞1 + 2 + 12 2 + 2 − 12  = 16 3 · 1 · 2 = 32 3 30. From Example 3(a), we have  = lim →∞ 2   =1 −2. Using a CAS,  =1 −2 = −22 − 1 2 − 1 and lim →∞ 2  · −22 − 1 2 − 1 = −22 − 1 ≈ 08647, whereas the estimate from Example 3(b) using 10 was 08632. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 11 31.  = () = cos. ∆ =  − 0  =   and  = 0 +  ∆ =   .  = lim →∞  = lim →∞  =1 ()∆ = lim →∞  =1 cos   ·  CAS = lim →∞  sin21 + 1 2sin2 −  2  CAS = sin If  =  2 , then  = sin 2 = 1. 32. (a) The diagram shows one of the  congruent triangles, 4, with central angle 2.  is the center of the circle and  is one of the sides of the polygon. Radius  is drawn so as to bisect ∠. It follows that  intersects  at right angles and bisects . Thus, 4 is divided into two right triangles with legs of length 1 2() =  sin() and  cos(). 4 has area 2 · 1 2[ sin()][ cos()] = 2 sin() cos() = 1 2 2 sin(2), so  =  · area(4) = 1 2 2 sin(2). (b) To use Equation 3.3.2, lim →0 sin  = 1, we need to have the same expression in the denominator as we have in the argument of the sine function—in this case, 2. lim →∞  = lim →∞ 1 2 2 sin(2) = lim →∞ 1 2 2 sin(2) 2 · 2  = lim →∞ sin(2) 2 2. Let  = 2 . Then as  → ∞,  → 0, so lim →∞ sin(2) 2 2 = lim →0 sin  2 = (1)2 = 2. 5.2 The Definite Integral 1. () =  − 1, −6 ≤  ≤ 4. ∆ =  −   = 4 − (−6) 5 = 2. Since we are using right endpoints, ∗  = . 5 = 5 =1 () ∆ = (∆)[(1) + (2) + (3) + (4) + (5) + (6)] = 2[(−4) + (−2) + (0) + (2) + (4)] = 2[−5 + (−3) + (−1) + 1 + 3] = 2(−5) = −10 The Riemann sum represents the sum of the areas of the two rectangles above the -axis minus the sum of the areas of the three rectangles below the -axis; that is, the net area of the rectangles with respect to the -axis. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.12 ¤ CHAPTER 5 INTEGRALS 2. () = cos, 0 ≤  ≤ 34 . ∆ =  −   = 34 − 0 6 =  8 . Since we are using left endpoints, ∗  = −1. 6 = 6 =1 (−1)∆ = (∆)[(0) + (1) + (2) + (3) + (4) + (5)] = 8 [(0) +  8  +  28 +  38 +  48 +  58] ≈ 1033186 The Riemann sum represents the sum of the areas of the four rectangles above the -axis minus the area of the rectangle below the -axis; that is, the net area of the rectangles with respect to the -axis. A sixth rectangle is degenerate, with height 0, and has no area. 3. () = 2 − 4, 0 ≤  ≤ 3. ∆ =  −   = 3 − 0 6 = 1 2 . Since we are using midpoints, ∗  =  = 1 2(−1 + ). 6 = 6 =1 () ∆ = (∆)[(1) + (2) + (3) + (4) + (5) + (6)] = 1 2  1 4 +  3 4 +  5 4 +  7 4 +  9 4 +  11 4  = 1 2 − 63 16 − 55 16 − 39 16 − 15 16 + 17 16 + 57 16 = 1 2− 98 16 = − 49 16 The Riemann sum represents the sum of the areas of the two rectangles above the -axis minus the sum of the areas of the four rectangles below the -axis; that is, the net area of the rectangles with respect to the -axis. 4. (a) () = 1  , 1 ≤  ≤ 2. ∆ =  −   = 2 − 1 4 = 1 4 . Since we are using right endpoints, ∗  = . 4 = 4 =1 () ∆ = (∆)[(1) + (2) + (3) + (4)] = 1 4 [ 5 4 +  6 4 +  7 4 +  8 4] = 1 4  4 5 + 2 3 + 4 7 + 1 2 ≈ 0634524 The Riemann sum represents the sum of the areas of the four rectangles. (b) Since we are using midpoints, ∗  =  = 1 2(−1 + ). 4 = 4 =1 () ∆ = (∆)[(1) + (2) + (3) + (4)] = 1 4  9 8 +  11 8  +  13 8  +  15 8  = 1 4  8 9 + 11 8 + 13 8 + 15 8  ≈ 0691220 The Riemann sum represents the sum of the areas of the four rectangles. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 13 5. (a) 010 () ≈ 5 = [(2) + (4) + (6) + (8) + (10)]∆ = [−1 + 0 + (−2) + 2 + 4](2) = 3(2) = 6 (b) 010 () ≈ 5 = [(0) + (2) + (4) + (6) + (8)] ∆ = [3 + (−1) + 0 + (−2) + 2](2) = 2(2) = 4 (c) 010 () ≈ 5 = [(1) + (3) + (5) + (7) + (9)]∆ = [0 + (−1) + (−1) + 0 + 3](2) = 1(2) = 2 6. (a) −42 () ≈ 6 = [(−1) + (0) + (1) + (2) + (3) + (4)]∆ = − 3 2 + 0 + 3 2 + 1 2 + (−1) + 1 2(1) = 0 (b) −42 () ≈ 6 = [(−2) + (−1) + (0) + (1) + (2) + (3)]∆ = 0 + − 3 2 + 0 + 3 2 + 1 2 + (−1)(1) = − 1 2 (c) −42 () ≈ 6 = − 3 2 + − 1 2 +  1 2 +  3 2 +  5 2 +  7 2 ∆ = −1 + (−1) + 1 + 1 + 0 + − 1 2(1) = − 1 2 7. Since  is increasing, 5 ≤ 10 30 () ≤ 5. Lower estimate = 5 = 5 =1 (−1)∆ = 4[(10) + (14) + (18) + (22) + (26)] = 4[−12 + (−6) + (−2) + 1 + 3] = 4(−16) = −64 Upper estimate = 5 = 5 =1 ()∆ = 4[(14) + (18) + (22) + (26) + (30)] = 4[−6 + (−2) + 1 + 3 + 8] = 4(4) = 16 8. (a) Using the right endpoints to approximate 39 (), we have 3 =1 ()∆ = 2[(5) + (7) + (9)] = 2 (−06 + 09 + 18) = 42. Since  is increasing, using right endpoints gives an overestimate. (b) Using the left endpoints to approximate 39 (), we have 3 =1 (−1)∆ = 2[(3) + (5) + (7)] = 2(−34 − 06 + 09) = −62. Since  is increasing, using left endpoints gives an underestimate. (c) Using the midpoint of each interval to approximate 39 (), we have 3 =1 ()∆ = 2[(4) + (6) + (8)] = 2(−21 + 03 + 14) = −08. We cannot say anything about the midpoint estimate compared to the exact value of the integral. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.14 ¤ CHAPTER 5 INTEGRALS 9. ∆ = (8 − 0)4 = 2, so the endpoints are 0, 2, 4, 6, and 8, and the midpoints are 1, 3, 5, and 7. The Midpoint Rule gives 08 sin√  ≈ 4 =1 (¯ )∆ = 2sin√1 + sin√3 + sin√5 + sin√7 ≈ 2(30910) = 61820. 10. ∆ = (1 − 0)5 = 1 5 , so the endpoints are 0, 1 5 , 2 5 , 3 5 , 4 5 , and 1, and the midpoints are 10 1 , 10 3 , 10 5 , 10 7 , and 10 9 . The Midpoint Rule gives 01 3 + 1 ≈ =1 5 (¯ )∆ = 1 5   10 1 3 + 1 +  10 3 3 + 1 +  10 5 3 + 1 +  10 7 3 + 1 +  10 9 3 + 1 ≈ 11097 11. ∆ = (2 − 0)5 = 2 5 , so the endpoints are 0, 2 5 , 4 5 , 6 5 , 8 5 , and 2, and the midpoints are 1 5 , 3 5 , 5 5 , 7 5 and 9 5 . The Midpoint Rule gives 02  + 1   ≈ =1 5 (¯ )∆ = 25 1 5 + 1 1 5 + 3 5 + 1 3 5 + 5 5 + 1 5 5 + 7 5 + 1 7 5 + 9 5 + 1 9 5  = 25127 56  = 127 140 ≈ 09071. 12. ∆ = ( − 0)4 = 4 , so the endpoints are 4 , 24 , 34 , and 44 , and the midpoints are 8 , 38 , 58 , and 78 . The Midpoint Rule gives 0 sin2   ≈ =1 5 (¯ )∆ = 4 8 sin2 8 + 38 sin2 38 + 58 sin2 58 + 78 sin2 78  ≈ 24674 13. In Maple 14, use the commands with(Student[Calculus1]) and ReimannSum(x/(x+1),0..2,partition=5,method=midpoint,output=plot). In some older versions of Maple, use with(student) to load the sum and box commands, then m:=middlesum(x/(x+1),x=0..2), which gives us the sum in summation notation, then M:=evalf(m) to get the numerical approximation, and finally middlebox(x/(x+1),x=0..2) to generate the graph. The values obtained for  = 5, 10, and 20 are 09071, 09029, and 09018, respectively. 14. For () = ( + 1) on [02], we calculate 100 ≈ 089469 and 100 ≈ 090802. Since  is increasing on [02], 100 is an underestimate of 02  + 1   and 100 is an overestimate. Thus, 08946  02  + 1    09081 15. We’ll create the table of values to approximate 0 sin  by using the program in the solution to Exercise 5.1.9 with Y1 = sin, Xmin = 0, Xmax = , and  = 5, 10, 50, and 100. The values of  appear to be approaching 2.   5 1933766 10 1983524 50 1999342 100 1999836 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 15 16. 02 −2  with  = 5, 10, 50, and 100.    5 1077467 0684794 10 0980007 0783670 50 0901705 0862438 100 0891896 0872262 The value of the integral lies between 0872 and 0892. Note that () = −2 is decreasing on (0 2). We cannot make a similar statement for −21 −2  since  is increasing on (−10). 17. On [0 1], lim →∞   =1  1 +  ∆ = 01 1 +   . 18. On [2 5], lim →∞   =1 1 + 3  ∆ = 25 √1 + 3 . 19. On [2 7], lim →∞  =1 [5(∗  )3 − 4∗  ]∆ = 27(53 − 4). 20. On [1 3], lim →∞  =1 ∗  (∗  )2 + 4 ∆ = 13 2+ 4 . 21. Note that ∆ = 5 − 2  = 3  and  = 2 +  ∆ = 2 + 3  . 25(4 − 2) = lim →∞ =1  ()∆ = lim →∞ =1  2 + 3  3 = lim →∞ 3 =1  4 − 22 + 3  = lim →∞ 3   =1 −6  = lim →∞ 3 −6  =1   = lim →∞ −182  (2+ 1) = lim →∞ −18 2   + 1   = −9 lim →∞ 1 + 1  = −9(1) = −9 22. Note that ∆ = 4 − 1  = 3  and  = 1 +  ∆ = 1 + 3  . 14(2 − 4 + 2) = lim →∞ =1  ()∆ = lim →∞ =1  1 + 3  3 = lim →∞ 3 =1  1 + 3 2 − 41 + 3  + 2 = lim →∞ 3   =1 1 + 6 + 922 − 4 − 12  + 2 = lim →∞ 3 =1  922 − 6 − 1 = lim →∞ 3   92 =1  2 − 6 =1   − =1  1 = lim →∞  273 ( + 1)(2 6  + 1) − 182 (2+ 1) − 3 · (1) = lim →∞ 9 2 ( + 1)(2 2  + 1) − 9 + 1  − 3 = lim →∞ 9 2  + 1  2+ 1 − 91 + 1  − 3 = lim →∞ 9 21 + 1 2 + 1  − 91 + 1  − 3 = 9 2(1)(2) − 9(1) − 3 = −3 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.16 ¤ CHAPTER 5 INTEGRALS 23. Note that ∆ = 0 − (−2)  = 2  and  = −2 +  ∆ = −2 + 2  . −02(2 + ) = lim →∞ =1  ()∆ = lim →∞ =1  −2 + 2 2 = lim →∞ 2 =1  −2 + 22 + −2 + 2 = lim →∞ 2   =1 4 − 8 + 422 − 2 + 2 = lim →∞ 2 =1  422 − 6 + 2 = lim →∞ 2  42 =1  2 − 6 =1   + =1  2 = lim →∞ 83 ( + 1)(2 6  + 1) − 122 (2+ 1) + 2 · (2) = lim →∞ 4 3 ( + 1)(2 2  + 1) − 6  + 1  + 4 = lim →∞ 4 3  + 1  2+ 1 − 61 + 1  + 4 = lim →∞ 4 31 + 1 2 + 1  − 61 + 1  + 4 = 43(1)(2) − 6(1) + 4 = 23 24. Note that ∆ = 2 − 0  = 2  and  = 0 +  ∆ = 2  . 02(2 − 3) = lim →∞ =1  ()∆ = lim →∞ =1  2 2 = lim →∞ 2 =1  22 − 23 = lim →∞ 2   =1 4 − 833  = lim →∞ 2 4 =1   − 83 =1  3 = lim →∞ 82 (2+ 1) − 164 (2+ 1)2 = lim →∞ 4 + 1  − 4 ( + 1) 2 2  = lim →∞ 41 + 1  − 4  + 1   + 1   = lim →∞ 41 + 1  − 41 + 1 1 + 1  = 4(1) − 4(1)(1) = 0 25. Note that ∆ = 1 − 0  = 1  and  = 0 +  ∆ =   . 01(3 − 32) = lim →∞ =1  ()∆ = lim →∞ =1    ∆ = lim →∞ =1   3 − 3 2 1 = lim →∞ 1   =1 33 − 322  = lim →∞ 1 13 =1  3 − 32 =1  2 = lim →∞ 14 (2+ 1)2 − 33 ( + 1)(2 6  + 1) = lim →∞ 1 4  + 1   + 1  − 1 2  + 1  2+ 1 = lim →∞ 1 41 + 1 1 + 1  − 1 21 + 1 2 + 1  = 14(1)(1) − 1 2(1)(2) = −34 26. (a) ∆ = (4 − 0)8 = 05 and ∗  =  = 05. 04(2 − 3) ≈ 8 =1 (∗  )∆ = 05052 − 3(05) + 102 − 3(10) + · · · + 352 − 3(35) + 402 − 3(40) = 1 2 − 5 4 − 2 − 9 4 − 2 − 5 4 + 0 + 7 4 + 4 = −15 (b) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 17 (c) 04(2 − 3) = lim →∞ =1  42 − 344  = lim →∞ 4  162 =1  2 − 12  =1   = lim →∞643 · ( + 1)(2 6  + 1) − 482 · (2+ 1) = lim →∞32 3 1 + 1 2 + 1  − 241 + 1  = 32 3 · 2 − 24 = − 8 3 (d) 04(2 − 3) = 1 − 2, where 1 is the area marked + and 2 is the area marked −. 27.    = lim →∞  −  =1   +  −  = lim →∞(− ) =1  1 + ( −2)2 =1   = lim →∞(− ) + ( −2)2 · (2+ 1) = ( − ) + lim →∞ ( −2)2 1 + 1  = ( − ) + 1 2( − )2 = ( − ) + 1 2 − 1 2 = ( − ) 1 2( + ) = 1 22 − 2 28.  2  = lim →∞  −  =1   +  −  2 = lim →∞  −  =1  2 + 2 −  + ( −2)2 2 = lim →∞( −3)3 =1  2 + 2(−2 )2 =1   + 2 (− ) =1  1 = lim →∞( −3)3 ( + 1) (2 6  + 1) + 2(−2 )2 (2+ 1) + 2 (− ) = lim →∞( −6)3 · 1 · 1 + 1 2 + 1  + ( − )2 · 1 · 1 + 1  + 2 ( − ) = ( − )3 3 + ( − )2 + 2 ( − ) = 3 − 32 + 32 − 3 3 + 2 − 22 + 3 + 2 − 3 = 3 3 − 3 3 − 2 + 2 + 2 − 2 = 3 − 3 3 29. () = √4 + 2,  = 1,  = 3, and ∆ = 3 − 1  = 2  . Using Theorem 4, we get ∗  =  = 1 +  ∆ = 1 + 2  , so 13 4 + 2  = lim →∞ = lim →∞ =1  4 + 1 + 22 · 2 . 30. () = 2 + 1  ,  = 2,  = 5, and ∆ = 5 − 2  = 3  . Using Theorem 4, we get ∗  =  = 2 +  ∆ = 2 + 3  , so 25 2 + 1  = lim →∞ = lim →∞ =1    2 + 32 + 2 +1 3    · 3 . 31. ∆ = ( − 0) =  and ∗  =  = . 0 sin 5  = lim →∞ =1  (sin 5) = lim →∞ =1  sin 5  CAS =  lim →∞ 1 cot5 2  CAS = 52  = 25 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.18 ¤ CHAPTER 5 INTEGRALS 32. ∆ = (10 − 2) = 8 and ∗  =  = 2 + 8. 210 6  = lim →∞ =1  2 + 868  = 8 lim →∞ 1 =1  2 + 86 CAS = 8 lim →∞ 1  · 6458,5936 + 164,0525 + 131,2084 − 27,7762 + 2048 215 CAS = 81,2497,984 = 9,9997,872 ≈ 1,428,5531 33. (a) Think of 02 () as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is  = 1 2( + ), so 02 () = 1 2(1 + 3)2 = 4. (b) 05 () = 02 () trapezoid + 23 () rectangle + 35 () triangle = 1 2 (1 + 3)2 + 3 · 1 + 1 2 · 2 · 3 = 4 + 3 + 3 = 10 (c) 57 () is the negative of the area of the triangle with base 2 and height 3. 57 () = − 1 2 · 2 · 3 = −3. (d) 79 () is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals − 1 2 ( + ) = − 1 2(3 + 2)2 = −5. Thus, 09 () = 05 () + 57 () + 79 () = 10 + (−3) + (−5) = 2. 34. (a) 02 () = 1 2 · 4 · 2 = 4 [area of a triangle] (b) 26 () = − 1 2(2)2 = −2 [negative of the area of a semicircle] (c) 67 () = 1 2 · 1 · 1 = 1 2 [area of a triangle] 07 () = 02 () + 26 () + 67 () = 4 − 2 + 1 2 = 45 − 2 35. −21(1 − ) can be interpreted as the difference of the areas of the two shaded triangles; that is, 1 2(2)(2) − 1 2(1)(1) = 2 − 1 2 = 3 2 . 36. 09  1 3 − 2  can be interpreted as the difference of the areas of the two shaded triangles; that is, − 1 2(6)(2) + 1 2(3)(1) = −6 + 3 2 = − 9 2 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 19 37. −031 + √9 − 2   can be interpreted as the area under the graph of () = 1 + √9 − 2 between  = −3 and  = 0. This is equal to one-quarter the area of the circle with radius 3, plus the area of the rectangle, so −031 + √9 − 2   = 1 4 · 32 + 1 · 3 = 3 + 9 4. 38. −55 − √25 − 2   = −55   − −55 √25 − 2 . By symmetry, the value of the first integral is 0 since the shaded area above the -axis equals the shaded area below the -axis. The second integral can be interpreted as one half the area of a circle with radius 5; that is, 1 2(5)2 = 25 2 . Thus, the value of the original integral is 0 − 25 2  = − 25 2 . 39. −34   1 2   can be interpreted as the sum of the areas of the two shaded triangles; that is, 1 2(4)(2) + 1 2(3) 3 2  = 4 + 9 4 = 25 4 . 40. 01 |2 − 1|  can be interpreted as the sum of the areas of the two shaded triangles; that is, 2 1 2  1 2 (1) = 1 2 . 41. 11 √1 + 4  = 0 since the limits of integration are equal. 42. 0 sin4   = − 0 sin4   [because we reversed the limits of integration] = − 0 sin4   [we can use any letter without changing the value of the integral] = − 3 8  [given value] 43. 01(5 − 62) = 01 5 − 601 2  = 5(1 − 0) − 6 1 3  = 5 − 2 = 3 44. 13 (2 − 1) = 213   − 13 1 = 2(3 − ) − 1(3 − 1) = 23 − 2 − 2 45. 13  + 2  = 13  · 2  = 2 13   = 2(3 − ) = 5 − 3 46. 02(2 cos  − 5) = 02 2cos   − 02 5  = 202 cos  − 502   = 2(1) − 5(2)2 − 02 2 = 2 − 52 8 47. −22 () + 25 () − −−21 () = −52 () + −−12 () [by Property 5 and reversing limits] = −51 () [Property 5] °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.20 ¤ CHAPTER 5 INTEGRALS 48. 24 ()  + 48 () = 28 (), so 48 () = 28 () − 24 () = 73 − 59 = 14. 49. 09[2() + 3()] = 209 () + 309 () = 2(37) + 3(16) = 122 50. If () = 3  for for    ≥ 3 3 , then 05 () can be interpreted as the area of the shaded region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2. Thus, 05 () = 5(3) + 1 2(2)(2) = 17. 51. 03 () is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1,  0(1), has a value between −1 and 0, so it has the next smallest value. The largest value is 38 (), followed by 48 (), which has a value about 1 unit less than 38 (). Still positive, but with a smaller value than 48 (), is 08 (). Ordering these quantities from smallest to largest gives us 03 ()   0(1)  08 ()  48 ()  38 () or B  E  A  D  C 52. (0) = 20 () = − 02 (), so (0) is negative, and similarly, so is (1). (3) and (4) are negative since they represent negatives of areas below the -axis. Since (2) = 22 () = 0 is the only non-negative value, choice C is the largest. 53.  = −24[() + 2 + 5]  = −24 () + 2−24   + −24 5 = 1 + 22 + 3 1 = −3 [area below -axis] + 3 − 3 = −3 2 = − 1 2(4)(4) [area of triangle, see figure] + 1 2(2)(2) = −8 + 2 = −6 3 = 5[2 − (−4)] = 5(6) = 30 Thus,  = −3 + 2(−6) + 30 = 15. 54. Using Integral Comparison Property 8,  ≤ () ≤  ⇒ (2 − 0) ≤ 02 () ≤ (2 − 0) ⇒ 2 ≤ 02 () ≤ 2. 55. 2 − 4 + 4 = ( − 2)2 ≥ 0 on [04], so 04(2 − 4 + 4) ≥ 0 [Property 6]. 56. 2 ≤  on [01] so √1 + 2 ≤ √1 +  on [01]. Hence, 01 √1 + 2  ≤ 01 √1 +   [Property 7]. 57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤ √1 + 2 ≤ √2 and 1[1 − (−1)] ≤ −11 √1 + 2  ≤ √2[1 − (−1)] [Property 8]; that is, 2 ≤ −11 √1 + 2  ≤ 2√2. 58. If  6 ≤  ≤  3 , then 1 2 ≤ sin ≤ √3 2 sin is increasing on  6  3 , so 1 2 3 − 6  ≤   63 sin  ≤ √23  3 − 6  [Property 8]; that is, 12  ≤   63 sin  ≤ √12 3 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.2 THE DEFINITE INTEGRAL ¤ 21 59. If 0 ≤  ≤ 1, then 0 ≤ 3 ≤ 1, so 0(1 − 0) ≤ 01 3  ≤ 1(1 − 0) [Property 8]; that is, 0 ≤ 01 3  ≤ 1. 60. If 0 ≤  ≤ 3, then 4 ≤  + 4 ≤ 7 and 1 7 ≤  + 4 1 ≤ 14, so 17(3 − 0) ≤ 03  + 4 1  ≤ 1 4(3 − 0) [Property 8]; that is, 3 7 ≤ 03  + 4 1  ≤ 34. 61. If  4 ≤  ≤ 3 , then 1 ≤ tan ≤ √3, so 1 3 − 4  ≤  43 tan  ≤ √3 3 − 4  or 12  ≤  43 tan  ≤ 12  √3. 62. Let () = 3 − 3 + 3 for 0 ≤  ≤ 2. Then  0() = 32 − 3 = 3( + 1)( − 1), so  is decreasing on (01) and increasing on (12).  has the absolute minimum value (1) = 1. Since (0) = 3 and (2) = 5, the absolute maximum value of  is (2) = 5. Thus, 1 ≤ 3 − 3 + 3 ≤ 5 for  in [0 2]. It follows from Property 8 that 1 · (2 − 0) ≤ 02 3 − 3 + 3  ≤ 5 · (2 − 0); that is, 2 ≤ 02 3 − 3 + 3  ≤ 10. 63. The only critical number of () = − on [02] is  = 1. Since (0) = 0, (1) = −1 ≈ 0368, and (2) = 2−2 ≈ 0271, we know that the absolute minimum value of  on [02] is 0, and the absolute maximum is −1. By Property 8 0 ≤ − ≤ −1 for 0 ≤  ≤ 2 ⇒ 0(2 − 0) ≤ 02 −  ≤ −1(2 − 0) ⇒ 0 ≤ 02 −  ≤ 2. 64. Let () =  − 2sin for  ≤  ≤ 2. Then  0() = 1 − 2cos and  0() = 0 ⇒ cos = 1 2 ⇒  = 53 .  has the absolute maximum value  53  = 53 − 2sin 53 = 53 + √3 ≈ 697 since () =  and (2) = 2 are both smaller than 697. Thus,  ≤ () ≤ 53 + √3 ⇒ (2 − ) ≤ 2 () ≤  53 + √3(2 − ); that is, 2 ≤ 2( − 2sin) ≤ 5 32 + √3. 65. √4 + 1 ≥ √4 = 2, so 13 √4 + 1 ≥ 13 2  = 1 3 33 − 13 = 26 3 . 66. 0 ≤ sin ≤ 1 for 0 ≤  ≤ 2 , so sin ≤  ⇒ 02 sin  ≤ 02   = 1 2  2 2 − 02 = 82 . 67. sin  √   for 1 ≤  ≤ 2 and arctan is an increasing function, so arctan(sin)  arctan√  arctan, and hence, 12 arctan(sin)   12 arctan√   12 arctan . Thus, 12 arctan  has the largest value. 68. 2  √ for 0   ≤ 05 and cosine is a decreasing function on [005], so cos(2)  cos√, and hence, 005 cos(2)   005 cos√ . Thus, 005 cos(2)  is larger. 69. Using right endpoints as in the proof of Property 2, we calculate  () = lim →∞  =1 ()∆ = lim →∞   =1 ()∆ =  lim →∞  =1 ()∆ =   (). 70. (a) Since − |()| ≤ () ≤ |()|, it follows from Property 7 that −  |()|  ≤  () ≤  |()|  ⇒    ()   ≤  |()|  Note that the definite integral is a real number, and so the following property applies: − ≤  ≤  ⇒ || ≤  for all real numbers  and nonnegative numbers . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.22 ¤ CHAPTER 5 INTEGRALS (b)  02 ()sin2    ≤ 02 |()sin2|  [by part (a)] = 02 |()| |sin 2|  ≤ 02 |()|  by Property 7 since |sin 2| ≤ 1 ⇒ |()| |sin 2| ≤ |()|. 71. Suppose that  is integrable on [01] that is, lim →∞  =1 (∗  )∆ exists for any choice of ∗  in [−1 ]. Let n denote a positive integer and divide the interval [01] into n equal subintervals 0 1 , 1  2 ,  ,  − 1 1. If we choose ∗  to be a rational number in the ith subinterval, then we obtain the Riemann sum  =1 (∗  ) · 1  = 0, so lim →∞  =1 (∗  ) · 1  = lim →∞ 0 = 0. Now suppose we choose ∗  to be an irrational number. Then we get  =1 (∗  ) · 1  =  =1 1 · 1  =  · 1  = 1 for each , so lim →∞  =1 (∗  ) · 1  = lim →∞ 1 = 1. Since the value of lim →∞  =1 (∗  )∆ depends on the choice of the sample points ∗  , the limit does not exist, and  is not integrable on [0 1]. 72. Partition the interval [01] into n equal subintervals and choose ∗ 1 = 1 2 . Then with () = 1,  =1 (∗  )∆ ≥ (∗ 1)∆ = 1 12 · 1  =  Thus,  =1 (∗  )∆ can be made arbitrarily large and hence,  is not integrable on [0 1]. 73. lim →∞  =1 4 5 = lim →∞  =1 4 4 · 1  = lim →∞  =1 4 1 . At this point, we need to recognize the limit as being of the form lim →∞  =1 ()∆, where ∆ = (1 − 0) = 1,  = 0 +  ∆ = , and () = 4. Thus, the definite integral is 01 4 . 74. lim →∞ 1   =1 1 1 + ()2 = lim →∞  =1 1 1 + ()2 · 1  = lim →∞  =1 ()∆, where ∆ = (1 − 0) = 1,  = 0 +  ∆ = , and () = 1 1 + 2 . Thus, the definite integral is 01 1 +2 . 75. Choose  = 1 +   and ∗  = √−1 = 1 +  − 11 +  . Then 12 −2  = lim →∞ 1   =1 1 1 +  − 11 +   = lim →∞  =1 1 ( +  − 1)( + ) = lim →∞   =1  +1 − 1 −  +1  [by the hint] = lim →∞=0 −1  +1  − =1   +1  = lim →∞ 1 +  + 1 1 + · · · + 21− 1 −  + 1 1 + · · · + 21− 1 + 21 = lim →∞ 1 − 21 = lim →∞1 − 1 2 = 1 2 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.DISCOVERY PROJECT AREA FUNCTIONS ¤ 23 DISCOVERY PROJECT Area Functions 1. (a) Area of trapezoid = 1 2(1 + 2) = 1 2(3 + 7)2 = 10 square units Or: Area of rectangle + area of triangle =  + 1 2  = (2)(3) + 1 2(2)(4) = 10 square units (b) As in part (a), () = 1 2[3 + (2 + 1)]( − 1) = 1 2(2 + 4)( − 1) = ( + 2)( − 1) = 2 +  − 2 square units (c) 0() = 2 + 1. This is the -coordinate of the point (2 + 1) on the given line. 2. (a) (b) () = −1 1 + 2  = −1 1 + −1 2  [Property 2] = 1[ − (−1)] + 3 − (−1)3 3 Exercise 5.2.28 Property 1 and =  + 1 + 1 3 3 + 1 3 = 1 3 3 +  + 4 3 (c) 0() = 2 + 1. This is the -coordinate of the point 1 + 2 on the given curve. (d) ( + ) − () is the area under the curve  = 1 + 2 from  =  to  =  + . (e) An approximating rectangle is shown in the figure. It has height 1 + 2, width , and area (1 + 2), so ( + ) − () ≈ (1 + 2) ⇒ ( + ) − ()  ≈ 1 + 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.24 ¤ CHAPTER 5 INTEGRALS (f ) Part (e) says that the average rate of change of  is approximately 1 + 2. As  approaches 0, the quotient approaches the instantaneous rate of change—namely, 0(). So the result of part (c), 0() = 2 + 1, is geometrically plausible. 3. (a) () = cos(2) (b) () starts to decrease at that value of  where cos2 changes from positive to negative; that is, at about  = 125. (c) () = 0 cos(2). Using an integration command, we find that (0) = 0, (02) ≈ 0200, (04) ≈ 0399, (06) ≈ 0592, (08) ≈ 0768, (10) ≈ 0905, (12) ≈ 0974, (14) ≈ 0950, (16) ≈ 0826, (18) ≈ 0635, and (20) ≈ 0461. (d) We sketch the graph of 0 using the method of Example 1 in Section 2.8. The graphs of 0() and () look alike, so we guess that 0() = (). 4. In Problems 1 and 2, we showed that if () =  (), then 0() = (), for the functions () = 2 + 1 and () = 1 + 2. In Problem 3 we guessed that the same is true for () = cos(2), based on visual evidence. So we conjecture that 0() = () for any continuous function . This turns out to be true and is proved in Section 5.3 (the Fundamental Theorem of Calculus). 5.3 The Fundamental Theorem of Calculus 1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this theorem and the paragraph that follows it on page 398. 2. (a) () = 0 (), so (0) = 00 () = 0. (1) = 01 () = 1 2 · 1 · 1 [area of triangle] = 1 2. (2) = 02 () = 01 () + 12 () [below the t-axis] = 1 2 − 1 2 · 1 · 1 = 0. (3) = (2) + 23 () = 0 − 1 2 · 1 · 1 = − 1 2. (4) = (3) + 34 () = − 1 2 + 1 2 · 1 · 1 = 0. (5) = (4) + 45 () = 0 + 15 = 15. (6) = (5) + 56 () = 15 + 25 = 4. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 25 (b) (7) = (6) + 67 () ≈ 4 + 22 [estimate from the graph] = 62. (d) (c) The answers from part (a) and part (b) indicate that  has a minimum at  = 3 and a maximum at  = 7. This makes sense from the graph of  since we are subtracting area on 1    3 and adding area on 3    7. 3. (a) () = 0 (). (0) = 00 () = 0 (1) = 01 () = 1 · 2 = 2 [rectangle], (2) = 02 () = 01 () + 12 () = (1) + 12 () = 2 + 1 · 2 + 1 2 · 1 · 2 = 5 [rectangle plus triangle], (3) = 03 () = (2) + 23 () = 5 + 1 2 · 1 · 4 = 7, (6) = (3) + 36 () [the integral is negative since  lies under the -axis] = 7 + −  1 2 · 2 · 2 + 1 · 2 = 7 − 4 = 3 (b)  is increasing on (03) because as  increases from 0 to 3, we keep adding more area. (d) (c)  has a maximum value when we start subtracting area; that is, at  = 3. 4. (a) () = 0 (), so (0) = 0 since the limits of integration are equal and (6) = 0 since the areas above and below the -axis are equal. (b) (1) is the area under the curve from 0 to 1, which includes two unit squares and about 80% to 90% of a third unit square, so (1) ≈ 28. Similarly, (2) ≈ 49 and (3) ≈ 57. Now (3) − (2) ≈ 08, so (4) ≈ (3) − 08 ≈ 49 by the symmetry of  about  = 3. Likewise, (5) ≈ 28. (c) As we go from  = 0 to  = 3, we are adding area, so  increases on the interval (03). (d)  increases on (03) and decreases on (36) [where we are subtracting area], so  has a maximum value at  = 3. (e) A graph of  must have a maximum at  = 3, be symmetric about  = 3, and have zeros at  = 0 and  = 6. (f) If we sketch the graph of 0 by estimating slopes on the graph of  (as in Section 2.8), we get a graph that looks like  (as indicated by FTC1). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.26 ¤ CHAPTER 5 INTEGRALS 5. (a) By FTC1 with () = 2 and  = 1, () = 1 2  ⇒ 0() = () = 2. (b) Using FTC2, () = 1 2  =  1 3 3 1 = 1 3 3 − 1 3 ⇒ 0() = 2. 6. (a) By FTC1 with () = 2 + sin and  = 0, () = 0(2 + sin) ⇒ 0() = () = 2 + sin. (b) Using FTC2, () = 0(2 + sin) = [2 − cos] 0 = (2 − cos) − (0 − 1) = 2 − cos  + 1 ⇒ 0() = 2 − (−sin) + 0 = 2 + sin 7. () = √ + 3 and () = 0 √ + 3 , so by FTC1, 0() = () = √ + 3. 8. () = ln(1 + 2) and () = 1 ln(1 + 2) , so by FTC1, 0() = () = ln(1 + 2). 9. () = ( − 2)8 and () = 5( − 2)8 , so by FTC1, 0() = () = ( − 2)8. 10. () = √  + 1 and () = 0 √+ 1  , so by FTC1, 0() = () = √+ 1  . 11. () = 0 √1 + sec  = − 0 √1 + sec  ⇒  0() = −  0 √1 + sec  = −√1 + sec 12. () = 2 3 sin  = − 2 3 sin  ⇒ 0() = −  2 3 sin  = −3 sin 13. Let  = . Then   = . Also,   =    , so 0() =   1 ln  =   1 ln  ·   = ln   = (ln) ·  = . 14. Let  = √. Then   = 1 2√. Also,   =    , so 0() =   1√ 4+ 1 2  =   1 4+ 1 2  ·   = 4+ 1 2   = 2 + 1 2√1 = 2(√2 + 1)  . 15. Let  = 3 + 2. Then   = 3. Also,   =    , so 0 =   13+2 1 + 3  =   1 1 + 3  ·   = 1 +3   = 1 + (3 3+ 2 + 2)3 · 3 = 1 + (3 3(3+ 2) + 2)3 16. Let  = 4. Then   = 43. Also,   =    , so 0 =   04 cos2   =   0 cos2   ·   = cos2    = cos2(4) · 43. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 27 17. Let  = √. Then   = 1 2√. Also,   =    , so 0 =   √  4  tan  = −   √4  tan  ·   = −tan   = −√tan√ · 2√1 = −12 tan√ 18. Let  = sin. Then   = cos. Also,   =    , so 0 =   sin 1  1 + 2  =   1 1 + 2  ·   = −  1 1 + 2  ·   = −√1 + 2 cos = −1 + sin2 cos  19. 13(2 + 2 − 4) =  1 33 + 2 − 43 1 = (9 + 9 − 12) −  1 3 + 1 − 4 = 6 + 8 3 = 26 3 20. −11 100  =  101 1 1011 −1 = 101 1 − − 101 1  = 101 2 21. 02( 4 53 − 3 42 + 2 5) =  1 54 − 1 43 + 1 522 0 =  16 5 − 2 + 4 5 − 0 = 2 22. 01(1 − 83 + 167)  =  − 24 + 281 0 = (1 − 2 + 2) − 0 = 1 23. 19 √  = 19 12  = 3322 9 1 = 2 3329 1 = 2 3(932 − 132) = 2 3(27 − 1) = 52 3 24. 18 −23  = 1133 8 1 = 3138 1 = 3(813 − 113) = 3(2 − 1) = 3 25.  6 sin  = −cos 6 = −cos  − −cos 6  = −(−1) − −√32 = 1 + √32 26. −55   = 5 −5 = 5 − (−5) = 10 27. 01( + 2)( − 3) = 01(2 −  − 6) =  1 33 − 1 22 − 61 0 =  1 3 − 1 2 − 6 − 0 = − 37 6 28. 04(4 − )√  = 04(4 − )12  = 04(412 − 32) =  8 332 − 2 5524 0 = 8 3(8) − 2 5(32) = 32015 −192 = 128 15 29. 14 2 + √2  = 14 √2 + √2  = 14(2−12 + 32)  = 412 + 2 5524 1 = 4(2) + 2 5(32) − 4 + 2 5 = 8 + 64 5 − 4 − 2 5 = 82 5 30. −21(3 − 2)( + 1)  = −21(32 +  − 2) = 3 + 1 22 − 22 −1 = (8 + 2 − 4) − −1 + 1 2 + 2 = 6 − 3 2 = 9 2 31.   62 csc cot   = −csc 2 6 = −csc 2  − −csc 6  = −1 − (−2) = 1 32.   43 csc2   = −cot 3 4 = −cot 3  − −cot 4  = −√13 − (−1) = 1 − √13 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.28 ¤ CHAPTER 5 INTEGRALS 33. 01(1 + )3  = 01(1 + 3 + 32 + 3)  =  + 3 2 2 + 3 + 1 4 41 0 = 1 + 3 2 + 1 + 1 4  − 0 = 15 4 34. 03(2 sin − ) = −2cos  − 3 0 = (−2cos 3 − 3) − (−2 − 1) = 3 − 2cos 3 − 3 35. 12 3 + 3 4 6 = 12  1 + 32  = ln|| + 32 1 = (ln 2 + 8) − (ln 1 + 1) = ln 2 + 7 36. 118 3   = 118 √3−12  = √321218 1 = 2√3(1812 − 112) = 2√3(3√2 − 1) 37. 01( + ) =  + 1 +1 + 1 0 =   + 1 1 +  − (0 + 1) =  + 1 1 +  − 1 38. 01 cosh  = sinh1 0 = sinh 1 − sinh 0 = sinh 1 or 1 2( − −1) 39. 1√√33 1 +82  = 8arctan√ 13√3 = 8 3 − 6  = 8 6  = 43 40. 13 3 − 22 2 −   = 13  − 2 − 1  =  1 2 2 − 2 − ln||3 1 =  9 2 − 6 − ln 3 −  1 2 − 2 − 0 = −ln 3 41. 04 2  = ln 2 1 24 0 = ln 2 16 − ln 2 1 = ln 2 15 42. 112√2 √1 4− 2  = 4arcsin1 1 √ 2 2 = 4 4 − 6  = 412   = 3 43. If () = sin cos if if 0≤2    ≤  ≤ 2 then 0 () = 02 sin  +   2 cos  = −cos  0 2 + sin 2 = −cos 2 + cos 0 + sin − sin 2 = −0 + 1 + 0 − 1 = 0 Note that  is integrable by Theorem 3 in Section 5.2. 44. If () = 24 − 2 if if 0−  2 ≤≤2≤ 0 then −22 () = −02 2 + 02(4 − 2) = 20 −2 + 4 − 1 3 32 0 = [0 − (−4)] +  16 3 − 0 = 28 3 Note that  is integrable by Theorem 3 in Section 5.2. 45. Area = 04 √  = 04 12  =  2 3 324 0 = 2 3(8) − 0 = 16 3 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 29 46. Area = 01 3  =  1 441 0 = 1 4 − 0 = 1 4 47. Area = −22(4 − 2)  = 4 − 1 332 −2 = 8 − 8 3 − −8 + 8 3 = 32 3 48. Area = 02(2 − 2)  = 2 − 1 332 0 = 4 − 8 3 − 0 = 4 3 49. From the graph, it appears that the area is about 60. The actual area is 027 13 =  3 44327 0 = 3 4 · 81 − 0 = 243 4 = 6075. This is 3 4 of the area of the viewing rectangle. 50. From the graph, it appears that the area is about 1 3. The actual area is 16 −4  = −−33 6 1 = 3−13 6 1 = −3 ·1216 + 13 = 215 648 ≈ 03318. 51. It appears that the area under the graph is about 2 3 of the area of the viewing rectangle, or about 2 3 ≈ 21. The actual area is 0 sin  = [−cos ] 0 = (−cos) − (−cos 0) = −(−1) + 1 = 2. 52. Splitting up the region as shown, we estimate that the area under the graph is  3 + 1 43 · 3  ≈ 18. The actual area is 03 sec2   = [tan] 0 3 = √3 − 0 = √3 ≈ 173. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.30 ¤ CHAPTER 5 INTEGRALS 53. −21 3  =  1 442 −1 = 4 − 1 4 = 15 4 = 375 54.  26 cos  = sin2  6 = 0 − 1 2 = − 1 2 55. () = −4 is not continuous on the interval [−21], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at  = 0, so −12 −4  does not exist. 56. () = 4 3 is not continuous on the interval [−1 2], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at  = 0, so −21 43  does not exist. 57. () = sec tan is not continuous on the interval [3 ], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at  = 2, so   3 sec tan  does not exist. 58. () = sec2  is not continuous on the interval [0 ], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at  = 2, so 0 sec2   does not exist. 59. () = 23  2 2 − + 1 1  = 20  2 2 − + 1 1  + 03  2 2 − + 1 1  = − 02  2 2 − + 1 1  + 03  2 2 − + 1 1  ⇒ 0() = −(2)2 − 1 (2)2 + 1 ·  (2) + (3 (3))2 2 − + 1 1 ·   (3) = −2 · 442 2 − + 1 1 + 3 · 992 2 − + 1 1 60. () = 1−1+2 2 sin  = 1−0 2 sin  + 01+2 sin  = − 01−2 sin  + 01+2 sin  ⇒ 0() = −(1 − 2)sin(1 − 2) ·  (1 − 2) + (1 + 2)sin(1 + 2) ·   (1 + 2) = 2(1 − 2)sin(1 − 2) + 2(1 + 2)sin(1 + 2) 61. () = 2 2  = 0 2  + 02 2  = − 0 2  + 02 2  ⇒  0() = −2 + (2)2 ·  (2) = −2 + 24 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 31 62. () = √2 arctan  = √0 arctan  + 02 arctan  = − 0√ arctan  + 02 arctan  ⇒  0() = −arctan√ ·   (√) + arctan 2 ·   (2) = −2√1 arctan√ + 2 arctan 2 63.  = cos sin ln(1 + 2) = cos 0  ln(1 + 2) + 0sin  ln(1 + 2) = − 0cos  ln(1 + 2) + 0sin  ln(1 + 2) ⇒ 0 = −ln(1 + 2 cos ) ·   cos  + ln(1 + 2 sin) ·   sin = sin ln(1 + 2 cos) + cos ln(1 + 2 sin) 64. () = 0(1 − 2)2  is increasing when  0() = (1 − 2)2 is positive. Since 2  0,  0()  0 ⇔ 1 − 2  0 ⇔ ||  1, so  is increasing on (−11). 65.  = 0 2 +2 + 2  ⇒ 0 = 2 +2 + 2 ⇒ 00 = (2 +  + 2)(2) − 2(2 + 1) (2 +  + 2)2 = 23 + 22 + 4 − 23 − 2 (2 +  + 2)2 = 2 + 4 (2 +  + 2)2 = ( + 4) (2 +  + 2)2 . The curve  is concave downward when 00  0; that is, on the interval (−4 0). 66. If () = 1 () , then by FTC1,  0() = (), and also,  00() =  0().  is concave downward where  00 is negative; that is, where  0 is negative. The given graph shows that  is decreasing ( 0  0) on the interval (−11). 67. () = 2 2  ⇒  0() = 2, so the slope at  = 2 is 22 = 4. The -coordinate of the point on  at  = 2 is (2) = 22 2  = 0 since the limits are equal. An equation of the tangent line is  − 0 = 4( − 2), or  = 4 − 24. 68. () = 3 () ⇒ 0() = (). Since () = 0sin  √1 + 2 , 00() =  0() = 1 + sin2 · cos, so 00( 6 ) = 1 + sin2( 6 ) · cos 6 = 1 + ( 1 2)2 · √23 = √25 · √23 = √415. 69. By FTC2, 14  0() = (4) − (1), so 17 = (4) − 12 ⇒ (4) = 17 + 12 = 29. 70. (a) erf() = √2 0 −2  ⇒ 0 −2  = √2 erf() By Property 5 of definite integrals in Section 5.2, 0 −2  = 0 −2  +  −2 , so  −2  = 0 −2  − 0 −2  = √2 erf() − √2 erf() = 1 2 √ [erf() − erf()]. (b)  = 2 erf() ⇒ 0 = 22 erf() + 2 erf0() = 2 + 2 · √2 −2 [by FTC1] = 2 + √2 . 71. (a) The Fresnel function () = 0 sin 2 2  has local maximum values where 0 = 0() = sin 2 2 and 0 changes from positive to negative. For   0, this happens when 2 2 = (2 − 1) [odd multiples of ] ⇔ °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.32 ¤ CHAPTER 5 INTEGRALS 2 = 2(2 − 1) ⇔  = √4 − 2,  any positive integer. For   0, 0 changes from positive to negative where 2 2 = 2 [even multiples of ] ⇔ 2 = 4 ⇔  = −2√. 0 does not change sign at  = 0. (b)  is concave upward on those intervals where 00()  0. Differentiating our expression for 0(), we get 00() = cos 2 22 2  = cos 2 2. For   0, 00()  0 where cos( 2 2)  0 ⇔ 0  2 2  2 or 2 − 1 2   2 2  2 + 1 2 ,  any integer ⇔ 0    1 or √4 − 1    √4 + 1,  any positive integer. For   0, 00()  0 where cos( 2 2)  0 ⇔ 2 − 3 2   2 2  2 − 1 2 ,  any integer ⇔ 4 − 3  2  4 − 1 ⇔ √4 − 3  ||  √4 − 1 ⇒ √4 − 3  −  √4 − 1 ⇒ −√4 − 3    −√4 − 1, so the intervals of upward concavity for   0 are −√4 − 1 −√4 − 3,  any positive integer. To summarize:  is concave upward on the intervals (01), −√3 −1, √3 √5, −√7 −√5, √7 3,    . (c) In Maple, we use plot({int(sin(Pi*tˆ2/2),t=0..x),0.2},x=0..2);. Note that Maple recognizes the Fresnel function, calling it FresnelS(x). In Mathematica, we use Plot[{Integrate[Sin[Pi*tˆ2/2],{t,0,x}],0.2},{x,0,2}]. In Derive, we load the utility file FRESNEL and plot FRESNEL_SIN(x). From the graphs, we see that 0 sin 2 2  = 02 at  ≈ 074. 72. (a) In Maple, we should start by setting si:=int(sin(t)/t,t=0..x);. In Mathematica, the command is si=Integrate[Sin[t]/t,{t,0,x}]. Note that both systems recognize this function; Maple calls it Si(x) and Mathematica calls it SinIntegral[x]. In Maple, the command to generate the graph is plot(si,x=-4*Pi..4*Pi);. In Mathematica, it is Plot[si,{x,-4*Pi,4*Pi}]. In Derive, we load the utility file EXP_INT and plot SI(x). (b) Si() has local maximum values where Si0() changes from positive to negative, passing through 0. From the Fundamental Theorem we know that Si0() =   0 sin   = sin, so we must have sin = 0 for a maximum, and for   0 we must have  = (2 − 1),  any positive integer, for Si0 to be changing from positive to negative at . For   0, we must have  = 2,  any positive integer, for a maximum, since the denominator of Si0() is negative for   0. Thus, the local maxima occur at  = , −2, 3, −4, 5, −6,    . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 33 (c) To find the first inflection point, we solve Si00() = cos  − sin 2 = 0. We can see from the graph that the first inflection point lies somewhere between  = 3 and  = 5. Using a rootfinder gives the value  ≈ 44934. To find the -coordinate of the inflection point, we evaluate Si(44934) ≈ 16556. So the coordinates of the first inflection point to the right of the origin are about (4493416556). Alternatively, we could graph 00() and estimate the first positive -value at which it changes sign. (d) It seems from the graph that the function has horizontal asymptotes at  ≈ 15, with lim →±∞ Si() ≈ ±15 respectively. Using the limit command, we get lim →∞ Si() = 2 . Since Si() is an odd function, lim →−∞ Si() = − 2 . So Si() has the horizontal asymptotes  = ± 2 . (e) We use the fsolve command in Maple (or FindRoot in Mathematica) to find that the solution is  ≈ 11. Or, as in Exercise 65(c), we graph  = Si() and  = 1 on the same screen to see where they intersect. 73. (a) By FTC1, 0() = (). So 0() = () = 0 at  = 1 357, and 9.  has local maxima at  = 1 and 5 (since  = 0 changes from positive to negative there) and local minima at  = 3 and 7. There is no local maximum or minimum at  = 9, since  is not defined for   9. (b) We can see from the graph that  01        13        35        57        79    . So (1) =   01    , (5) = 05   = (1) −   13     +   35    , and (9) = 09   = (5) −   57     +   79    . Thus, (1)  (5)  (9), and so the absolute maximum of () occurs at  = 9. (c)  is concave downward on those intervals where 00  0. But 0() = (), so 00() =  0(), which is negative on (approximately)  1 22, (4 6) and (89). So  is concave downward on these intervals. (d) 74. (a) By FTC1, 0() = (). So 0() = () = 0 at  = 2, 4, 6, 8, and 10.  has local maxima at  = 2 and 6 (since  = 0 changes from positive to negative there) and local minima at  = 4 and 8. There is no local maximum or minimum at  = 10, since  is not defined for   10. (b) We can see from the graph that  02        24        46        68        810    . So (2) =   02    , (6) = 06   = (2) −   24     +   46    , and (10) = 010   = (6) −   68     +   810    . Thus, (2)  (6)  (10), and so the absolute maximum of () occurs at  = 2. (c)  is concave downward on those intervals where 00  0. But 0() = (), so 00() =  0(), which is negative on (13), (57) and (910). So  is concave downward on these intervals. (d) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.34 ¤ CHAPTER 5 INTEGRALS 75. lim →∞  =1 45 + 2  = lim →∞ =1  44 +   1 = lim →∞ 1 − 0 =1   4 +   = 01(4 + )  =  1 55 + 1 221 0 =  1 5 + 1 2 − 0 = 10 7 76. lim →∞ 1  1 + 2 + · · · +    = lim →∞ 1 − 0 =1   = 01 √  = 2332 1 0 = 2 3 − 0 = 23 77. Suppose   0. Since  is continuous on [ +  ], the Extreme Value Theorem says that there are numbers  and  in [ +  ] such that () =  and () = , where  and  are the absolute minimum and maximum values of  on [ +  ]. By Property 8 of integrals, (−) ≤ + () ≤ (−); that is, ()(−) ≤ − + () ≤ ()(−). Since −  0, we can divide this inequality by −: () ≤ 1  +  () ≤ (). By Equation 2, ( + ) − ()  = 1  + () for  6= 0, and hence () ≤ ( + ) − () ≤ (), which is Equation 3 in the case where   0. 78.   (()) () =   () () + () () [where  is in the domain of  ] =   −() () +   () () = −(()) 0() + (()) 0() = (())0 () − (())0() 79. (a) Let () = √ ⇒  0() = 1(2√)  0 for   0 ⇒  is increasing on (0 ∞). If  ≥ 0, then 3 ≥ 0, so 1 + 3 ≥ 1 and since  is increasing, this means that 1 + 3 ≥ (1) ⇒ √1 + 3 ≥ 1 for  ≥ 0. Next let () = 2 −  ⇒ 0() = 2 − 1 ⇒ 0()  0 when  ≥ 1. Thus,  is increasing on (1 ∞). And since (1) = 0, () ≥ 0 when  ≥ 1. Now let  = √1 + 3, where  ≥ 0. √1 + 3 ≥ 1 (from above) ⇒  ≥ 1 ⇒ () ≥ 0 ⇒ 1 + 3 − √1 + 3 ≥ 0 for  ≥ 0. Therefore, 1 ≤ √1 + 3 ≤ 1 + 3 for  ≥ 0. (b) From part (a) and Property 7: 01 1 ≤ 01 √1 + 3  ≤ 01(1 + 3) ⇔ 1 0 ≤ 01 √1 + 3  ≤  + 1 441 0 ⇔ 1 ≤ 01 √1 + 3  ≤ 1 + 1 4 = 125. 80. (a) For 0 ≤  ≤ 1 we have 2 ≤  Since () = cos is a decreasing function on [01],cos(2) ≥ cos (b) 6  1 so by part (a), cos(2) ≥ cos on [0 6]. Thus, 06 cos(2) ≥ 06 cos  = sin 0 6 = sin(6) − sin 0 = 1 2 − 0 = 1 2. 81. 0  2 4 + 2 + 1  2 4 = 1 2 on [5 10], so 0 ≤ 510 4 +22 + 1   510 12  = −110 5 = −10 1 − −15 = 10 1 = 01 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 35 82. (a) If   0, then () = 0 () = 0 0 = 0. If 0 ≤  ≤ 1, then () = 0 () = 0   =  1 22 0 = 1 22. If 1   ≤ 2, then () = 0 () = 01 () + 1 () = (1) + 1(2 − ) = 1 2 (1)2 + 2 − 1 22 1 = 1 2 + 2 − 1 22 − 2 − 1 2  = 2 − 1 22 − 1. If   2, then () = 0 () = (2) + 2 0 = 1 + 0 = 1. So () =  0 if   0 1 2 2 if 0 ≤  ≤ 1 2 − 1 22 − 1 if 1   ≤ 2 1 if   2 (b) (c)  is not differentiable at its corners at  = 0, 1, and 2.  is differentiable on (−∞0), (01), (12) and (2 ∞).  is differentiable on (−∞ ∞). 83. Using FTC1, we differentiate both sides of 6 +  (2)  = 2√ to get (2) = 2 2√1  ⇒ () = 32. To find , we substitute  =  in the original equation to obtain 6 +  (2)  = 2√ ⇒ 6 + 0 = 2√ ⇒ 3 = √ ⇒  = 9. 84.  = 3 ⇒ 0   = 30   ⇒ [] 0 = 3 [] 0 ⇒  − 1 = 3( − 1) ⇒  = 3 − 2 ⇒  = ln(3 − 2) 85. (a) Let () = 0 (). Then, by FTC1,  0() = () = rate of depreciation, so () represents the loss in value over the interval [0 ]. (b) () = 1   + 0 () =  +() represents the average expenditure per unit of  during the interval [0 ], assuming that there has been only one overhaul during that time period. The company wants to minimize average expenditure. (c) () = 1   + 0 (). Using FTC1, we have 0() = −12  + 0 () + 1 (). 0() = 0 ⇒  () =  + 0 () ⇒ () = 1  + 0 () = (). 86. (a) () = 1  0 [() + ()]. Using FTC1 and the Product Rule, we have 0() = 1  [() + ()] − 1 2 0 [() + ()]. Set 0() = 0: 1 [() + ()] − 12 0 [() + ()] = 0 ⇒ [() + ()] − 1  0 [() + ()]  = 0 ⇒ [() + ()] − () = 0 ⇒ () = () + (). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.36 ¤ CHAPTER 5 INTEGRALS (b) For 0 ≤  ≤ 30, we have () = 015  − 450   = 15   − 900  2 0 = 15   − 900  2. So () =  ⇒  15  −  900 2 =  ⇒ 60 − 2 = 900 ⇒ 2 − 60 + 900 = 0 ⇒ ( − 30)2 = 0 ⇒  = 30. So the length of time  is 30 months. (c) () = 1  015  − 450   + 12,9002 = 1 15   − 900  2 + 38,7003 0 = 1  15   − 900  2 + 38,7003 = 15  − 900   + 38,7002 ⇒ 0() = −  900 +  19,350  = 0 when 1 19,350  = 1 900 ⇒  = 215. (215) =  15 −  900 (215) +  38,700(215)2 ≈ 005472 , (0) = 15  ≈ 006667 , and (30) =  15 −  900 (30) +  38,700(30)2 ≈ 005659 , so the absolute minimum is (215) ≈ 005472 . (d) As in part (c), we have () =  15 −  900  +  38,7002, so () = () + () ⇔  15 −  900  +  38,7002 = 15  − 450   + 12,9002 ⇔ 212,1900 − 38,1700 = 450 1 − 900 1  ⇔  = 2138 900 ,700 = 43 2 = 215. This is the value of  that we obtained as the critical number of  in part (c), so we have verified the result of (a) in this case. 5.4 Indefinite Integrals and the Net Change Theorem 1.   −√1 +  2 +  =   −(1 + 2)12 +  = − · 1 2(1 + 2)−12((2 )2) − (1 + 2)12 · 1 + 0 = − (1 + 2)−12 2 − (1 + 2) 2 = − −1 (1 + 2)122 = 1 2√1 + 2 2.   21 + 41 sin 2 +  = 1 2 + 14 cos 2 · 2 + 0 = 12 + 12 cos 2 = 1 2 + 1 22cos2  − 1 = 1 2 + cos2  − 1 2 = cos2  3.  (tan −  + ) = sec2  − 1 + 0 = tan2  4.   1522 (3 − 2)( + )32 +  = 1522 (3 − 2) 3 2( + )12() + ( + )32(3) + 0 = 2 152 (3)( + )12 (3 − 2) 1 2 + ( + ) = 2 5 ( + )125 2 = √ +  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 37 5.  (13 + 725) = 21323 + 37535 +  = 21323 + 235 +  6.  √4 5  =  54  = 4 994 +  7.  5 + 2 32 + 3 43  = 5 + 2 3 · 1 33 + 3 4 · 1 44 +  = 5 + 2 93 + 16 3 4 +  8.  (6 − 25 − 3 + 2 7) = 1 77 − 2 · 1 66 − 1 44 + 2 7 +  = 1 77 − 1 36 − 1 44 + 2 7 +  9.  ( + 4)(2 + 1) =  (22 + 9 + 4) = 2 33 + 9 22 + 4 +  = 2 33 + 922 + 4 +  10.  √(2 + 3 + 2)  =  12(2 + 3 + 2)  =  (52 + 332 + 212)  = 2 7 72 + 3 · 2 552 + 2 · 2 332 +  = 2 772 + 6 552 + 4 332 +  11.  1 + √ +   =  1 + √ +    =  1 + −12 + 1  = ln|| + 212 +  +  = ln|| + 2√ +  +  12.  2 + 1 + 21+ 1  = 33 +  + tan−1  +  13.  (sin + sinh) = −cos + cosh +  14.  1 +  2  =  1 + 22+ 2  = (−2 + 2−1 + 1)  = −−1 + 2 ln|| +  +  = −1 + 2 ln|| +  +  15.  (2 + tan2 ) =  [2 + (sec2  − 1)]  =  (1 + sec2 )  =  + tan +  16.  sec(sec + tan) =  (sec2  + sec tan) = tan + sec +  17.  2(1 + 5)  =  (2 + 2 · 5)  =  (2 + 10)  = ln 2 2 + ln 10 10 +  18.  sin 2 sin  =  2sinsin  cos  =  2cos  = 2 sin +  19.  cos + 1 2  = sin + 1 42 + . The members of the family in the figure correspond to  = −5, 0, 5, and 10. 20.  ( − 22) =  − 2 33 +  The members of the family in the figure correspond to  = −5, 0, 2, and 5. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.38 ¤ CHAPTER 5 INTEGRALS 21. −32(2 − 3) =  1 33 − 33 −2 = (9 − 9) − − 8 3 + 6 = 8 3 − 18 3 = − 10 3 22. 12(43 − 32 + 2) = 4 − 3 + 22 1 = (16 − 8 + 4) − (1 − 1 + 1) = 12 − 1 = 11 23. −02  1 24 + 1 43 −   =  10 1 5 + 16 1 4 − 1 220 −2 = 0 −  10 1 (−32) + 16 1 (16) − 1 2(4) = − − 16 5 + 1 − 2 = 21 5 24. 03(1 + 62 − 104) =  + 23 − 253 0 = (3 + 54 − 486) − 0 = −429 25. 02(2 − 3)(42 + 1) = 02(83 − 122 + 2 − 3) = 24 − 43 + 2 − 32 0 = (32 − 32 + 4 − 6) − 0 = −2 26. −11 (1 − )2  = −11 (1 − 2 + 2) = −11( − 22 + 3) =  1 22 − 2 33 + 1 441 −1 =  1 2 − 2 3 + 1 4  −  1 2 + 2 3 + 1 4  = − 4 3 27. 0(5 + 3 sin) = [5 − 3cos ] 0 = [5 − 3(−1)] − [5(1) − 3(1)] = 5 + 1 28. 12 12 − 43   = 12(−2 − 4−3) = −−11 − 4−−22 2 1 = −1 + 22 2 1 = −12 + 12 − (−1 + 2) = −1 29. 14 4 + 6 √  = 14 √4 + √6  = 14(4−12 + 612) = 812 + 4324 1 = (16 + 32) − (8 + 4) = 36 30. 01 1 +42  = 4arctan1 0 = 4 arctan 1 − 4arctan0 = 44  − 4(0) =  31. 01 √3  + √4    = 01(43 + 54) =  3 773 + 4 9941 0 =  3 7 + 4 9  − 0 = 55 63 32. 14 √−2   = 14 √2 − 2   = 14(−32 − −1) = −2−12 − ln|| 4 1 = −√2 − ln||4 1 = (−1 − ln 4) − (−2 − ln 1) = 1 − ln 4 33. 12 2 − 2  = 1 42 − 2ln||2 1 = (1 − 2ln2) − 14 − 2ln1 = 34 − 2ln2 34. 01(5 − 5) = 522 − ln 5 5 1 0 = 5 2 − ln 5 5  − 0 − ln 5 1  = 52 − ln 5 4 35. 01(10 + 10) = 11 11 + ln 10 10 1 0 = 11 1 + ln 10 10  − 0 + ln 10 1  = 11 1 + ln 10 9 36. 04 sec tan  = sec 0 4 = sec 4 − sec 0 = √2 − 1 37. 04 1 + cos cos2 2   = 04cos12  + cos cos2 2     = 04(sec2  + 1)  = tan +  0 4 = tan 4 + 4  − (0 + 0) = 1 + 4 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 39 38. 03 sin + sin sec2 tan2   = 03 sin (1 + tan sec2  2 )  = 03 sinsec  sec 2 2   = 03 sin  = −cos 0 3 = − 1 2 − (−1) = 1 2 39. 18 2 + √3 2  = 18 223 + 23   = 18(2−23 + 13) = 2 · 313 + 3 4 438 1 = (12 + 12) − 6 + 3 4 = 69 4 40. −10 10 sinh2+ cosh    = −10 10  − −2 2 +  + − 2  = −10 10 2  = −10 10 2 = 210 −10 = 20 − (−20) = 40 41. 0√32 √1 − 2 = arcsin√ 0 32 = arcsin√32 − arcsin 0 = 3 − 0 = 3 42. 12 ( −21)3 = 12 3 − 322+ 3 − 1  = 12  − 3 + 3 − 12   =  1 2 2 − 3 + 3 ln|| + 12 1 = 2 − 6 + 3 ln 2 + 1 2 −  1 2 − 3 + 0 + 1 = 3 ln 2 − 2 43. 01√3  2 4 − − 1 1  = 01√3 (2 + 1)( 2 −21− 1)  = 01√3 2 1+ 1  = arctan1 0√3 = arctan1√3 − arctan 0 = 6 − 0 =  6 44. |2 − 1| = 2−(2−1− 1) if if 2 2  − − 1 1 ≥  0 0 = 2 1−−21 if if    ≥ 1 2 1 2 Thus, 02 |2 − 1|  = 012(1 − 2) + 122(2 − 1) =  − 21 02 + 2 − 2 12 = ( 1 2 − 1 4) − 0 + (4 − 2) − ( 1 4 − 1 2) = 1 4 + 2 − (− 1 4) = 5 2 45. −21 ( − 2||) = −01[ − 2(−)]  + 02[ − 2()]  = −01 3  + 02(−) = 3 1 2 20 −1 −  1 2 22 0 = 30 − 1 2 − (2 − 0) = − 7 2 = −35 46. 032 |sin|  = 0 sin  + 32(−sin) =  − cos 0 + cos 3 2 = [1 − (−1)] + [0 − (−1)] = 2 + 1 = 3 47. The graph shows that  = 1 − 2 − 54 has -intercepts at  =  ≈ −086 and at  =  ≈ 042. So the area of the region that lies under the curve and above the -axis is (1 − 2 − 54) =  − 2 − 5  = ( − 2 − 5) − ( − 2 − 5) ≈ 136 48. The graph shows that  = (2 + 1)−1 − 4 has -intercepts at  =  ≈ −087 and at  =  ≈ 087. So the area of the region that lies under the curve and above the -axis is  (2 + 1)−1 − 4  = tan−1  − 1 5 5  = tan−1  − 1 5 5 − tan−1  − 1 5 5 ≈ 123 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.40 ¤ CHAPTER 5 INTEGRALS 49.  = 022 − 2  = 2 − 1 332 0 = 4 − 8 3  − 0 = 4 3 50.  = √4  ⇒  = 4, so  = 01 4  =  1 551 0 = 1 5 . 51. If 0() is the rate of change of weight in pounds per year, then () represents the weight in pounds of the child at age . We know from the Net Change Theorem that 510 0() = (10) − (5), so the integral represents the increase in the child’s weight (in pounds) between the ages of 5 and 10. 52.  () =  0() = () − () by the Net Change Theorem, so it represents the change in the charge  from time  =  to  = . 53. Since () is the rate at which oil leaks, we can write () = − 0(), where  () is the volume of oil at time . [Note that the minus sign is needed because  is decreasing, so  0() is negative, but () is positive.] Thus, by the Net Change Theorem, 0120 () = − 0120  0() = −[ (120) −  (0)] =  (0) −  (120), which is the number of gallons of oil that leaked from the tank in the first two hours (120 minutes). 54. By the Net Change Theorem, 015 0() = (15) − (0) = (15) − 100 represents the increase in the bee population in 15 weeks. So 100 + 015 0() = (15) represents the total bee population after 15 weeks. 55. By the Net Change Theorem, 1000 5000 0() = (5000) − (1000), so it represents the increase in revenue when production is increased from 1000 units to 5000 units. 56. The slope of the trail is the rate of change of the elevation , so () = 0(). By the Net Change Theorem, 35 () = 35 0() = (5) − (3) is the change in the elevation  between  = 3 miles and  = 5 miles from the start of the trail. 57. In general, the unit of measurement for  () is the product of the unit for () and the unit for . Since () is measured in newtons and  is measured in meters, the units for 0100 () are newton-meters (or joules). (A newton-meter is abbreviated N·m.) 58. The units for () are pounds per foot and the units for  are feet, so the units for  are pounds per foot per foot, denoted (lbft)ft. The unit of measurement for 28 () is the product of pounds per foot and feet; that is, pounds. 59. (a) Displacement = 03(3 − 5) =  3 22 − 53 0 = 27 2 − 15 = − 3 2 m (b) Distance traveled = 03 |3 − 5|  = 053(5 − 3) + 533(3 − 5) = 5 − 3 225 03 +  3 22 − 53 53 = 25 3 − 3 2 · 25 9 + 27 2 − 15 −  3 2 · 25 9 − 25 3  = 41 6 m 60. (a) Displacement = 24(2 − 2 − 3)  =  1 33 − 2 − 34 2 =  64 3 − 16 − 12 −  8 3 − 4 − 6 = 2 3 m (b) () = 2 − 2 − 3 = ( + 1)( − 3), so ()  0 for −1    3, but on the interval [24], ()  0 for 2 ≤   3. Distance traveled = 24  2 − 2 − 3   = 23 −(2 − 2 − 3) + 34(2 − 2 − 3) = − 1 33 + 2 + 33 2 +  1 33 − 2 − 34 3 = (−9 + 9 + 9) − − 8 3 + 4 + 6 +  64 3 − 16 − 12 − (9 − 9 − 9) = 4 m °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 41 61. (a) 0() = () =  + 4 ⇒ () = 1 2 2 + 4 +  ⇒ (0) =  = 5 ⇒ () = 1 2 2 + 4 + 5 ms (b) Distance traveled = 010 |()|  = 010   1 2 2 + 4 + 5   = 010 1 2 2 + 4 + 5  =  1 6 3 + 22 + 510 0 = 500 3 + 200 + 50 = 416 2 3 m 62. (a) 0() = () = 2 + 3 ⇒ () = 2 + 3 +  ⇒ (0) =  = −4 ⇒ () = 2 + 3 − 4 (b) Distance traveled = 03  2 + 3 − 4   = 03 |( + 4)( − 1)|  = 01−2 − 3 + 4  + 132 + 3 − 4  = − 1 3 3 − 3 2 2 + 41 0 +  1 3 3 + 3 2 2 − 43 1 = − 1 3 − 3 2 + 4 + 9 + 27 2 − 12 −  1 3 + 3 2 − 4 = 89 6 m 63. Since 0() = (),  = 04 () = 049 + 2√   = 9 + 4 3 324 0 = 36 + 32 3 − 0 = 140 3 = 46 2 3 kg. 64. By the Net Change Theorem, the amount of water that flows from the tank during the first 10 minutes is 010 () = 010(200 − 4) = 200 − 2210 0 = (2000 − 200) − 0 = 1800 liters. 65. Let  be the position of the car. We know from Equation 2 that (100) − (0) = 0100 (). We use the Midpoint Rule for 0 ≤  ≤ 100 with  = 5. Note that the length of each of the five time intervals is 20 seconds = 3600 20 hour = 180 1 hour. So the distance traveled is 0100 () ≈ 180 1 [(10) + (30) + (50) + (70) + (90)] = 180 1 (38 + 58 + 51 + 53 + 47) = 247 180 ≈ 14 miles. 66. (a) By the Net Change Theorem, the total amount spewed into the atmosphere is (6) − (0) = 06 () = (6) since (0) = 0. The rate () is positive, so  is an increasing function. Thus, an upper estimate for (6) is 6 and a lower estimate for (6) is 6. ∆ =  −   = 6 − 0 6 = 1. 6 = 6 =1 ()∆ = 10 + 24 + 36 + 46 + 54 + 60 = 230 tonnes. 6 = 6 =1 (−1)∆ = 6 + (0) − (6) = 230 + 2 − 60 = 172 tonnes. (b) ∆ =  −   = 6 − 0 3 = 2. (6) ≈ 3 = 2[(1) + (3) + (5)] = 2(10 + 36 + 54) = 2(100) = 200 tonnes. 67. From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards is (4000) − (2000) = 2000 4000 0(). 2000 4000 0() = 2000 4000(3 − 001 + 00000062) = 3 − 00052 + 000000234000 2000 = 60,000 − 2,000 = $58,000 68. By the Net Change Theorem, the amount of water after four days is 25,000 + 04 () ≈ 25,000 + 4 = 25,000 + 4 −4 0 [(05) + (15) + (25) + (35)] ≈ 25,000 + [1500 + 1770 + 740 + (−690)] = 28,320 liters °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.42 ¤ CHAPTER 5 INTEGRALS 69. To use the Midpoint Rule, we’ll use the midpoint of each of three 2-second intervals. (6) − (0) = 06 ()  ≈ [(1) + (3) + (5)] 6 −3 0 ≈ (06 + 10 + 93)(2) = 398 fts 70. Use the midpoint of each of four 2-day intervals. Let  = 0 correspond to July 18 and note that the inflow rate, (), is in ft3s. Amount of water = 08 ()  ≈ [(1) + (3) + (5) + (7)] 8 −4 0 ≈ [6401 + 4249 + 3821 + 2628](2) = 34,198. Now multiply by the number of seconds in a day, 24 · 602, to get 2,954,707,200 ft3. 71. Let () denote the bacteria population at time  (in hours). By the Net Change Theorem, (1) − (0) = 01  0() = 01(1000 · 2) = 1000 ln 2 2 1 0 = 1000 ln 2 (21 − 20) = 1000 ln 2 ≈ 1443 Thus, the population after one hour is 4000 + 1443 = 5443. 72. Let () denote the number of megabits transmitted at time  (in hours) [note that () is measured in megabits/second]. By the Net Change Theorem and the Midpoint Rule, (8) − (0) = 08 3600() ≈ 3600 · 8−4 0[(1) + (3) + (5) + (7)] ≈ 7200(032 + 050 + 056 + 083) = 7200(221) = 15,912 megabits 73. Power is the rate of change of energy with respect to time; that is, () = 0(). By the Net Change Theorem and the Midpoint Rule, (24) − (0) = 024 () ≈ 2412 − 0[(1) + (3) + (5) + · · · + (21) + (23)] ≈ 2(16,900 + 16,400 + 17,000 + 19,800 + 20,700 + 21,200 + 20,500 + 20,500 + 21,700 + 22,300 + 21,700 + 18,900) = 2(237,600) = 475,200 Thus, the energy used on that day was approximately 4.75 × 105 megawatt-hours. 74. (a) From Exercise 4.1.74(a), () = 0001463 − 0115532 + 2498169 − 2126872. (b) (125) − (0) = 0125 () = 00003654 − 0038513 + 124908452 − 2126872125 0 ≈ 206,407 ft 5.5 The Substitution Rule 1. Let  = 2. Then  = 2 and  = 1 2 , so  cos 2  =  cos  1 2  = 1 2 sin +  = 1 2 sin 2 + . 2. Let  = −2. Then  = −2  and   = − 1 2 , so  −2  =   − 1 2  = − 1 2  +  = − 1 2 −2 + . 3. Let  = 3 + 1. Then  = 32  and 2  = 1 3 , so  23 + 1 =  √  1 3  = 13 3322 +  = 13 · 2332 +  = 2 9(3 + 1)32 + . 4. Let  = sin. Then  = cos , so  sin2  cos   =  2  = 1 3 3 +  = 1 3 sin3  + . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.5 THE SUBSTITUTION RULE ¤ 43 5. Let  = 4 − 5. Then  = 43  and 3  = 1 4 , so  4−3 5  =  114  = 1 4 ln|| +  = 1 4 ln 4 − 5  + . 6. Let  = 2 + 1. Then  = 2 and  = 1 2 , so  √2 + 1 =  √  1 2  = 1 2 · 2 332 +  = 1 3(2 + 1)32 + . 7. Let  = 1 − 2. Then  = −2  and   = − 1 2 , so  √1 − 2  =  √ − 1 2  = − 1 2 · 2 332 +  = − 1 3(1 − 2)32 + . 8. Let  = 3. Then  = 32  and 2  = 1 3 , so  23  =    1 3  = 1 3 +  = 1 33 + . 9. Let  = 1 − 2. Then  = −2 and  = − 1 2 , so  (1 − 2)9  =  9 − 1 2  = − 1 2 · 10 1 10 +  = − 20 1 (1 − 2)10 + . 10. Let  = 1 + cos. Then  = −sin  and sin  = −, so  sin √1 + cos  =  √(−) = − 2 332 +  = − 2 3(1 + cos)32 + . 11. Let  =  2 . Then  = 2  and  = 2 , so  cos 2   =  cos  2  = 2 sin +  = 2 sin 2  + . 12. Let  = 2. Then  = 2 and  = 1 2 , so  sec2 2  =  sec2   1 2  = 1 2 tan +  = 1 2 tan 2 + . 13. Let  = 5 − 3. Then  = −3 and  = − 1 3 , so  5 −3 =  1 − 1 3  = − 1 3 ln|| +  = − 1 3 ln|5 − 3| + . 14. Let  = 4 − 3. Then  = −32  and 2  = − 1 3 , so  2(4 − 3)23  =  23 − 1 3  = − 1 3 · 3 553 +  = − 1 5(4 − 3)53 + . 15. Let  = cos. Then  = −sin  and sin  = −, so  cos3  sin  =  3(−) = − 1 44 +  = − 1 4 cos4  + . 16. Let  = −5. Then  = −5 and  = − 1 5 , so  −5  =  − 1 5  = − 1 5 +  = − 1 5−5 + . 17. Let  = 1 − . Then  = −  and   = −, so  (1 −)2  =  12 (−) = −  −2  = −(−−1) +  = 1 +  = 1 −1 + . 18. Let  = √. Then  = 1 2√  and 2 = √1 , so  sin√√  =  sin(2) = −2cos +  = −2cos √ + . 19. Let  = 3 + 3. Then  = (3 + 32) = 3( + 2), so  √3 ++ 2 3  =  1 3 1 2 = 13  −12  = 1 3 · 212 +  = 2 33 + 3 + . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.44 ¤ CHAPTER 5 INTEGRALS 20. Let  = 3 + 1. Then  = 32  and 1 3  = 2  + , so  3+ 1 2  =  1  1 3  = 1 3 ln|| +  = 1 3 ln|3 + 1| + . 21. Let  = ln. Then  =   , so  (ln)2  =  2  = 1 33 +  = 1 3(ln)3 + . 22. Let  = cos. Then  = −sin  and − = sin , so  sin sin(cos) =  sin(−) = (−cos )(−1) +  = cos(cos) + . 23. Let  = tan. Then  = sec2  , so  sec2  tan3   =  3  = 1 44 +  = 1 4 tan4  + . 24. Let  =  + 2. Then  =  and  =  − 2, so  √ + 2 =  ( − 2)√  =  (32 − 212) = 2 552 − 2 · 2 332 +  = 2 5( + 2)52 − 4 3( + 2)32 + . 25. Let  = 1 + . Then  =  , so  √1 +   =  √  = 2 332 +  = 2 3(1 + )32 + . Or: Let  = √1 + . Then 2 = 1 +  and 2  =  , so  √1 +   =   · 2  = 2 33 +  = 2 3(1 + )32 + . 26. Let  =  + . Then  =   and  = (1), so   +  =  (1) = 1  1  = 1 ln|| +  = 1 ln| + | + . 27. Let  = 3 + 3. Then  = (32 + 3) and 1 3  = (2 + 1), so  (2 + 1)(3 + 3)4  =  4 ( 1 3 ) = 1 3 · 1 55 +  = 15 1 (3 + 3)5 + . 28. Let  = cos. Then  = −sin  and sin  = −, so  cos  sin  =   (−) = − +  = −cos  + . 29. Let  = 5. Then  = 5 ln5 and 5  = 1 ln5 , so  5 sin(5) =  sin ln5 1  = −ln5 1 cos +  = −ln5 1 cos(5) + . 30. Let  = tan. Then  = sec2  , so  tan sec22   =  12  =  −2  = −1−1 +  = −tan 1  +  = −cot + . Or:  tan sec22   =  cos12  · cos sin22   =  csc2   = −cot +  31. Let  = arctan. Then  = 1 2 + 1 , so  (arctan 2 + 1)2  =  2  = 1 33 +  = 1 3(arctan)3 + . 32. Let  = 2 + 4. Then  = 2  and   = 1 2 , so  2+ 4  =  1 12  = 1 2 ln|| +  = 1 2 ln 2 + 4  +  = 12 ln(2 + 4) +  [since 2 + 4  0]. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.5 THE SUBSTITUTION RULE ¤ 45 33. Let  = 1 + 5. Then  = 5 and  = 1 5 , so  cos(1 + 5) =  cos  1 5  = 1 5 sin +  = 1 5 sin(1 + 5) + . 34. Let  =   . Then  = −  2  and 12  = −1 , so  cos( 2 )  =  cos−1  = −1 sin +  = −1 sin  +  35. Let  = cot. Then  = −csc2   and csc2   = −, so  √cot csc2   =  √(−) = −3322 +  = − 2 3(cot)32 + . 36. Let  = 2 + 3. Then  = 2 ln 2 and 2  = 1 ln 2 , so  22+ 3   =  1ln 2 1  = ln 2 1 ln|| +  = ln 2 1 ln(2 + 3) + . 37. Let  = sinh. Then  = cosh , so  sinh2  cosh  =  2  = 1 33 +  = 1 3 sinh3 + . 38. Let  = 1 + tan. Then  = sec2  , so  cos2  √ 1 + tan =  √sec 1 + tan 2    =  √ =  −12  = 1122 +  = 2√1 + tan + . 39.  1 + cos sin 22   = 2 1 + cos sincos 2   = 2. Let  = cos. Then  = −sin , so 2 = −2 1 +  2 = −2 · 1 2 ln(1 + 2) +  = −ln(1 + 2) +  = −ln(1 + cos2 ) + . Or: Let  = 1 + cos2 . 40. Let  = cos. Then  = −sin  and sin  = −, so  1 + cos sin2   =  1 + − 2 = −tan−1  +  = −tan−1(cos) + . 41.  cot   =  cos sin . Let  = sin. Then  = cos , so  cot  =  1  = ln|| +  = ln|sin| + . 42. Let  = ln. Then  = 1  , so  cos(ln  )  =  cos  = sin +  = sin(ln) + . 43. Let  = sin−1 . Then  = √1 1− 2 , so  √1 −  2 sin−1  =  1  = ln|| +  = ln sin−1   + . 44. Let  = 2. Then  = 2 , so  1 +4  =  1 + 1 2  2 = 1 2 tan−1  +  = 1 2 tan−1(2) + . 45. Let  = 1 + 2. Then  = 2 , so  1 + 1 +2  =  1 +12  +  1 +2  = tan−1  +  1 2  = tan−1  + 1 2 ln|| +  = tan−1  + 1 2 ln 1 + 2  +  = tan−1  + 1 2 ln1 + 2 +  [since 1 + 2  0]. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.46 ¤ CHAPTER 5 INTEGRALS 46. Let  = 2 + . Then  = ,  =  − 2, and 2 = ( − 2)2, so  2√2 +   =  ( − 2)2√  =  (2 − 4 + 4)12  =  (52 − 432 + 412) = 2 7 72 − 8 552 + 8 332 +  = 2 7(2 + )72 − 8 5(2 + )52 + 8 3(2 + )32 +  47. Let  = 2 + 5. Then  = 2 and  = 1 2( − 5), so  (2 + 5)8  =  1 2( − 5)8 ( 1 2 ) = 1 4  (9 − 58) = 1 4 ( 10 1 10 − 5 99) +  = 40 1 (2 + 5)10 − 36 5 (2 + 5)9 +  48. Let  = 2 + 1 [so 2 =  − 1]. Then  = 2  and   = 1 2 , so  3 √2 + 1  =  2 √2 + 1  =  ( − 1)√  1 2  = 1 2  (32 − 12) = 1 2  2 552 − 2 332 +  = 1 5(2 + 1)52 − 1 3(2 + 1)32 + . Or: Let  = √2 + 1. Then 2 = 2 + 1 ⇒ 2  = 2  ⇒   =  , so  3 √2 + 1  =  2 √2 + 1  =  (2 − 1) ·   =  (4 − 2) = 1 5 5 − 1 33 +  = 1 5(2 + 1)52 − 1 3(2 + 1)32 + . Note: This answer can be written as 1 15 √2 + 1(34 + 2 − 2) + . 49. () = (2 − 1)3.  = 2 − 1 ⇒  = 2  so  (2 − 1)3  =  3 1 2  = 1 84 +  = 1 8(2 − 1)4 +  Where  is positive (negative),  is increasing (decreasing). Where  changes from negative to positive (positive to negative),  has a local minimum (maximum). 50. () = tan2  sec2 .  = tan ⇒  = sec2  , so  tan2  sec2   =  2  = 1 33 +  = 1 3 tan3  +  Note that  is positive and  is increasing. At  = 0,  = 0 and  has a horizontal tangent. 51. () = cos  sin.  = cos ⇒  = −sin , so  cos  sin  =   (−) = − +  = −cos  +  Note that at  = ,  changes from positive to negative and  has a local maximum. Also, both  and  are periodic with period 2, so at  = 0 and at  = 2,  changes from negative to positive and  has a local minimum. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.5 THE SUBSTITUTION RULE ¤ 47 52. () = sincos4.  = cos ⇒  = −sin , so  sincos4  =  4 (−) = − 1 5 5 +  = − 1 5 cos5 +  Note that at  = ,  changes from positive to negative and  has a local maximum. Also, both  and  are periodic with period 2, so at  = 0 and at  = 2,  changes from negative to positive and  has a local minimum. 53. Let  =  2 , so  = 2 . When  = 0,  = 0; when  = 1,  = 2 . Thus, 01 cos(2) = 02 cos  2  = 2 [sin] 0 2 = 2 sin 2 − sin 0 = 2 (1 − 0) = 2 54. Let  = 3 − 1, so  = 3. When  = 0,  = −1; when  = 1,  = 2. Thus, 01(3 − 1)50  = −21 50  1 3  = 1 3  51 1 512 −1 = 153 1 251 − (−1)51 = 153 1 (251 + 1) 55. Let  = 1 + 7, so  = 7. When  = 0,  = 1; when  = 1,  = 8. Thus, 01 √3 1 + 7  = 18 13( 1 7 ) = 1 7  3 4 438 1 = 28 3 (843 − 143) = 28 3 (16 − 1) = 45 28 56. Let  = 5 + 1, so  = 5. When  = 0,  = 1; when  = 3,  = 16. Thus, 03 5 + 1 = 116 115  = 1 5 ln|| 16 1 = 15(ln 16 − ln 1) = 1 5 ln 16. 57. Let  = cos, so  = −sin . When  = 0,  = 1; when  = 6 ,  = √32. Thus, 06 cos sin2  = 1√32 12 (−) =  1 √ 1 32 = √23 − 1. 58. Let  = 1 2 , so  = 1 2 . When  = 3 ,  = 6 ; when  = 23 ,  = 3 . Thus,  2 3 3 csc2 1 2   =   63 csc2 (2) = 2−cot  3 6 = −2cot 3 − cot 6  = −2√13 − √3 = −2 1 3√3 − √3 = 4 3√3 59. Let  = 1, so  = −12 . When  = 1,  = 1; when  = 2,  = 1 2 . Thus, 12 1 2  = 112  (−) = − 1 12 = −(12 − ) =  − √. 60. Let  = −2, so  = −2 . When  = 0,  = 0; when  = 1,  = −1. Thus, 01 −2  = 0−1 − 1 2  = − 1 2 − 0 1 = − 1 2 −1 − 0 = 1 2(1 − 1). 61. −  44(3 + 4 tan) = 0 by Theorem 7(b), since () = 3 + 4 tan is an odd function. 62. Let  = sin, so  = cos . When  = 0,  = 0; when  = 2 ,  = 1. Thus, 02 cos sin(sin) = 01 sin  = −cos1 0 = −(cos 1 − 1) = 1 − cos 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.48 ¤ CHAPTER 5 INTEGRALS 63. Let  = 1 + 2, so  = 2. When  = 0,  = 1; when  = 13,  = 27. Thus, 013 3 (1 + 2  )2 = 127 −23 1 2  =  1 2 · 31327 1 = 3 2(3 − 1) = 3. 64. Assume   0. Let  = 2 − 2, so  = −2 . When  = 0,  = 2; when  = ,  = 0. Thus, 0  √2 − 2  = 02 12− 1 2  = 1 2 02 12  = 1 2 ·  2 332 02 = 1 33. 65. Let  = 2 + 2, so  = 2  and   = 1 2 . When  = 0,  = 2; when  = ,  = 22. Thus, 0  2 + 2  = 222 12 1 2  = 1 2 2 3322 22 =  1 3322 22 = 1 3(22)32 − (2)32 = 1 32√2 − 13 66. −  33 4 sin  = 0 by Theorem 7(b), since () = 4 sin is an odd function. 67. Let  =  − 1, so  + 1 =  and  = . When  = 1,  = 0; when  = 2,  = 1. Thus, 12  √ − 1  = 01( + 1)√  = 01(32 + 12) =  2 552 + 2 3321 0 = 2 5 + 2 3 = 16 15. 68. Let  = 1 + 2, so  = 1 2( − 1) and  = 2. When  = 0,  = 1; when  = 4,  = 9. Thus, 04 √1 + 2    = 19 1 2(√− 1)  2 = 1 4 19(12 − −12) = 1 4 2 332 − 2129 1 = 1 4 · 2 332 − 3129 1 = 1 6 [(27 − 9) − (1 − 3)] = 20 6 = 10 3 69. Let  = ln, so  =   . When  = ,  = 1; when  = 4;  = 4. Thus, 4  √ln = 14 −12  = 2124 1 = 2(2 − 1) = 2. 70. Let  = ( − 1)2, so  = 2( − 1). When  = 0,  = 1; when  = 2,  = 1. Thus, 02( − 1)(−1)2  = 11  1 2  = 0 since the limits are equal. 71. Let  =  + , so  = ( + 1) . When  = 0,  = 1; when  = 1,  =  + 1. Thus, 01   + 1 +   = 1+1 1  = ln|| 1+1 = ln| + 1| − ln|1| = ln( + 1). 72. Let  = 2  − , so  = 2 . When  = 0  = −; when  = 2 ,  =  − . Thus, 02 sin2 −   = −− sin 2  = 2 −cos −− = −2[cos( − ) − cos(−)] = −  2 (−cos − cos) = −  2 (−2cos) =   cos °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.5 THE SUBSTITUTION RULE ¤ 49 73. Let  = 1 + √, so  = 1 2√  ⇒ 2√  =  ⇒ 2( − 1) = . When  = 0,  = 1; when  = 1,  = 2. Thus, 01 (1 + √)4 = 12 14 · [2( − 1)] = 212 13 − 14   = 2−212 + 313 2 1 = 2− 1 8 + 24 1  − − 1 2 + 1 3 = 2 12 1  = 1 6 74. If () = sin √3 , then (−) = sin √3 − = sin(−√3 ) = −sin √3  = −(), so  is an odd function. Now  = −32 sin √3   = −22 sin √3   + 23 sin √3   = 1 + 2. 1 = 0 by Theorem 7(b). To estimate 2, note that 2 ≤  ≤ 3 ⇒ √3 2 ≤ √3  ≤ √3 3 [≈ 144] ⇒ 0 ≤ √3  ≤ 2 [≈ 157] ⇒ sin 0 ≤ sin √3  ≤ sin 2 [since sine is increasing on this interval] ⇒ 0 ≤ sin √3  ≤ 1. By comparison property 8, 0(3 − 2) ≤ 2 ≤ 1(3 − 2) ⇒ 0 ≤ 2 ≤ 1 ⇒ 0 ≤  ≤ 1. 75. From the graph, it appears that the area under the curve is about 1 + a little more than 1 2 · 1 · 07, or about 14. The exact area is given by  = 01 √2 + 1. Let  = 2 + 1, so  = 2. The limits change to 2 · 0 + 1 = 1 and 2 · 1 + 1 = 3, and  = 13 √ 1 2  = 1 2 2 3323 1 = 1 33√3 − 1 = √3 − 1 3 ≈ 1399. 76. From the graph, it appears that the area under the curve is almost 1 2 ·  · 26, or about 4. The exact area is given by  = 0(2 sin − sin 2) = −2cos 0 − 0 sin 2  = −2(−1 − 1) − 0 = 4 Note: 0 sin2  = 0 since it is clear from the graph of  = sin2 that   2 sin2  = − 02 sin2 . 77. First write the integral as a sum of two integrals:  = −22( + 3)√4 − 2  = 1 + 2 = −22  √4 − 2  + −22 3√4 − 2 . 1 = 0 by Theorem 7(b), since () =  √4 − 2 is an odd function and we are integrating from  = −2 to  = 2. We interpret 2 as three times the area of a semicircle with radius 2, so  = 0 + 3 · 1 2 · 22 = 6. 78. Let  = 2. Then  = 2  and the limits are unchanged (02 = 0 and 12 = 1), so  = 01 √1 − 4  = 1 2 01 √1 − 2 . But this integral can be interpreted as the area of a quarter-circle with radius 1. So  = 1 2 · 1 4  · 12 = 1 8. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.50 ¤ CHAPTER 5 INTEGRALS 79. First Figure Let  = √, so  = 2 and  = 2 . When  = 0,  = 0; when  = 1,  = 1. Thus, 1 = 01 √  = 01 (2 ) = 201  . Second Figure 2 = 01 2  = 201  . Third Figure Let  = sin, so  = cos . When  = 0,  = 0; when  = 2 ,  = 1. Thus, 3 = 02 sin  sin 2  = 02 sin (2 sin cos) = 01 (2 ) = 201  . Since 1 = 2 = 3, all three areas are equal. 80. Let  =  12 . Then  =  12  and 024() = 02485 − 018 cos12   = 02(85 − 018 cos)12   = 12  85 − 018 sin2 0 = 12  [(85 · 2 − 0) − (0 − 0)] = 2040 kcal 81. The rate is measured in liters per minute. Integrating from  = 0 minutes to  = 60 minutes will give us the total amount of oil that leaks out (in liters) during the first hour. 060 () = 060 100−001  [ = −001,  = −001] = 1000−06(−100) = −10,000− 0 06 = −10,000(−06 − 1) ≈ 45119 ≈ 4512 liters 82. Let () =  with  = 450268 and  = 112567, and () = population after  hours. Since () = 0(), 03 () = (3) − (0) is the total change in the population after three hours. Since we start with 400 bacteria, the population will be (3) = 400 + 03 () = 400 + 03   = 400 +  3 0 = 400 +  3 − 1 ≈ 400 + 11,313 = 11,713 bacteria 83. The volume of inhaled air in the lungs at time  is  () = 0 () = 0 1 2 sin25  = 025 1 2 sin 25  substitute  = 25 ,  = 25  = 5 4 −cos2 05 = 45 −cos25  + 1 = 45 1 − cos25  liters 84. The rate  is measured in kilograms per year. Integrating from  = 0 years (2000) to  = 20 years (2020) will give us the net change in biomass from 2000 to 2020. 020 (1 + 5 60,000−−0066)2  = 61+5−12 60,000 2 − 1 3    = 1 + 5 = −3−0−606   = 20,0001+5 6 −12 = 1 + 5 20,000 −12 − 20,6000 ≈ 16,666 Thus, the predicted biomass for the year 2020 is approximately 25,000 + 16,666 = 41,666 kg. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 5.5 THE SUBSTITUTION RULE ¤ 51 85. 030 () = 030  0−  = 0 1−30 (−)   == −− −    = 0− 1−30 = 0(−−30 + 1) The integral 030 () represents the total amount of urea removed from the blood in the first 30 minutes of dialysis. 86. Number of calculators = (4) − (2) = 24 50001 − 100( + 10)−2  = 5000 + 100( + 10)−14 2 = 50004 + 100 14  − 2 + 100 12  ≈ 4048 87. Let  = 2. Then  = 2, so 02 (2) = 04 () 1 2  = 1 2 04 () = 1 2(10) = 5. 88. Let  = 2. Then  = 2 , so 03 (2) = 09 () 1 2  = 1 2 09 () = 1 2(4) = 2. 89. Let  = −. Then  = −, so  (−) = −− ()(−) = −− () = −− () From the diagram, we see that the equality follows from the fact that we are reflecting the graph of , and the limits of integration, about the -axis. 90. Let  =  + . Then  = , so  ( + ) = ++ () = ++ () From the diagram, we see that the equality follows from the fact that we are translating the graph of , and the limits of integration, by a distance . 91. Let  = 1 − . Then  = 1 −  and  = −, so 01 (1 − )  = 10 (1 − ) (−) = 01 (1 − )  = 01 (1 − ) . 92. Let  =  − . Then  = −. When  = ,  = 0 and when  = 0,  = . So 0 (sin) = − 0( − )(sin( − )) = 0( − )(sin) =  0 (sin) − 0  (sin) =  0 (sin) − 0  (sin) ⇒ 20  (sin) =  0 (sin) ⇒ 0  (sin) = 2 0 (sin). 93. sin 1 + cos2  =  · sin 2 − sin2  =  (sin), where () = 2 − 2 . By Exercise 92, 0 1 + cos sin2   = 0  (sin) = 2 0 (sin) = 2 0 1 + cos sin2   Let  = cos. Then  = −sin . When  = ,  = −1 and when  = 0,  = 1. So  2 0 1 + cos sin2   = −2 1−1 1 +2 = 2 −11 1 +2 = 2 tan−1 1 −1 =  2 [tan−1 1 − tan−1(−1)] =  2 4 − −4  = 42 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.52 ¤ CHAPTER 5 INTEGRALS 94. (a) 02 (cos) = 02 sin 2 −    = 2 − ,  = − =  0 2 (sin)(−) = 02 (sin) = 02 (sin) Continuity of  is needed in order to apply the substitution rule for definite integrals. (b) In part (a), take () = 2, so 02 cos2   = 02 sin2  . Now 02 cos2   + 02 sin2   = 02(cos2  + sin2 ) = 02 1 =    0 2 = 2 , so 202 cos2   = 2 ⇒ 02 cos2   = 4 = 02 sin2  . 5 Review 1. True by Property 2 of the Integral in Section 5.2. 2. False. Try  = 0,  = 2, () = () = 1 as a counterexample. 3. True by Property 3 of the Integral in Section 5.2. 4. False. You can’t take a variable outside the integral sign. For example, using () = 1 on [01], 01  () = 01   =  1 2 21 0 = 1 2 (a constant) while  01 1 = []1 0 =  · 1 =  (a variable). 5. False. For example, let () = 2. Then 01 √2  = 01   = 1 2, but 01 2  =  1 3 = √13. 6. True by the Net Change Theorem. 7. True by Comparison Property 7 of the Integral in Section 5.2. 8. False. For example, let  = 0,  = 1, () = 3, () = . ()  () for each  in (0 1), but  0() = 0  1 = 0() for  ∈ (01). 9. True. The integrand is an odd function that is continuous on [−1 1]. 10. True. −552 +  +   = −552 +   + −55   = 2052 +   + 0 [because 2 +  is even and  is odd] 11. False. For example, the function  = || is continuous on R, but has no derivative at  = 0. 12. True by FTC1. 13. True by Property 5 of Integrals. 14. False. For example, 01  − 1 2   =  1 2 2 − 1 2 1 0 =  1 2 − 1 2  − (0 − 0) = 0, but () =  − 1 2 6= 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 REVIEW ¤ 53 15. False.  () is a constant, so    () = 0, not () [unless () = 0]. Compare the given statement carefully with FTC1, in which the upper limit in the integral is . 16. False. See the paragraph before Note 4 and Figure 4 in Section 5.2, and notice that  =  − 3  0 for 1   ≤ 2. 17. False. The function () = 14 is not bounded on the interval [−21]. It has an infinite discontinuity at  = 0, so it is not integrable on the interval. (If the integral were to exist, a positive value would be expected, by Comparison Property 6 of Integrals.) 18. False. For example, if () = 10 if if 0−≤1 ≤   ≤ 1 0 then  has a jump discontinuity at 0, but −11 () exists and is equal to 1. 1. (a) 6 = 6 =1 (−1)∆ [∆ = 6 −6 0 = 1] = (0) · 1 + (1) · 1 + (2) · 1 + (3) · 1 + (4) · 1 + (5) · 1 ≈ 2 + 35 + 4 + 2 + (−1) + (−25) = 8 The Riemann sum represents the sum of the areas of the four rectangles above the -axis minus the sum of the areas of the two rectangles below the -axis. (b) 6 = 6 =1 ()∆ [∆ = 6 −6 0 = 1] = (1) · 1 + (2) · 1 + (3) · 1 + (4) · 1 + (5) · 1 + (6) · 1 = (05) + (15) + (25) + (35) + (45) + (55) ≈ 3 + 39 + 34 + 03 + (−2) + (−29) = 57 The Riemann sum represents the sum of the areas of the four rectangles above the -axis minus the sum of the areas of the two rectangles below the -axis. 2. (a) () = 2 −  and ∆ = 2 −4 0 = 05 ⇒ 4 = 05(05) + 05(1) + 05(15) + 05(2) = 05(−025 + 0 + 075 + 2) = 125 The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the area of the rectangle below the x-axis. (The second rectangle vanishes.) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.54 ¤ CHAPTER 5 INTEGRALS (b) 022 −   = lim →∞  =1 () ∆ [∆ = 2 and  = 2] = lim →∞  =1422 − 22  = lim →∞ 2 42 =1  2 − 2 =1   = lim →∞83 · ( + 1)(2 6  + 1) − 42 · (2+ 1) = lim →∞4 3 ·  + 1  · 2+ 1 − 2 ·  + 1   = lim →∞4 31 + 1 2 + 1  − 21 + 1  = 4 3 · 1 · 2 − 2 · 1 = 2 3 (c) 022 −   =  1 33 − 1 222 0 =  8 3 − 2 = 2 3 (d) 022 −   = 1 − 2, where 1 and 2 are the areas shown in the diagram. 3. 01 + √1 − 2  = 01   + 01 √1 − 2  = 1 + 2. 1 can be interpreted as the area of the triangle shown in the figure and 2 can be interpreted as the area of the quarter-circle. Area = 1 2(1)(1) + 1 4()(1)2 = 1 2 + 4 . 4. On [0 ], lim →∞  =1 sin ∆ = 0 sin  = [−cos] 0 = −(−1) − (−1) = 2. 5. 06 () = 04 () + 46 () ⇒ 10 = 7 + 46 () ⇒ 46 () = 10 − 7 = 3 6. (a) 15( + 25) = lim →∞  =1 ()∆ ∆ = 5 − 1 = 4 ,  = 1 + 4 = lim →∞  =1 1 + 4 + 21 + 45 · 4 CAS = lim →∞ 13054 + 312633+ 20802 − 256 · 4 = 5220 (b) 15( + 25) =  1 22 + 2 665 1 =  25 2 + 15,3625  −  1 2 + 1 3  = 12 + 5208 = 5220 7. First note that either  or  must be the graph of 0 (), since 00 () = 0, and (0) 6= 0. Now notice that   0 when  is increasing, and that   0 when  is increasing. It follows that  is the graph of (),  is the graph of  0(), and  is the graph of 0 (). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 REVIEW ¤ 55 8. (a) By the Net Change Theorem (FTC2), 01   arctan   = arctan 1 0 = 4 − 1 (b)   01 arctan   = 0 since this is the derivative of a constant. (c) By FTC1,   0 arctan   = arctan . 9. (4) = 04 () = 01 () + 12 () + 23 () + 34 () = − 1 2 · 1 · 2 area of triangle, below -axis  + 1 2 · 1 · 2 + 1 · 2 + 1 2 · 1 · 2 = 3 By FTC1, 0() = (), so 0(4) = (4) = 0. 10. () = 0 () ⇒ 0() = () [by FTC1] ⇒ 00() =  0(), so 00(4) =  0(4) = −2, which is the slope of the line segment at  = 4. 11. 1283 + 32  = 8 · 1 44 + 3 · 1 332 1 = 24 + 32 1 = 2 · 24 + 23 − (2 + 1) = 40 − 3 = 37 12. 0 4 − 8 + 7  =  1 55 − 42 + 7 0 =  1 5 5 − 4 2 + 7 − 0 = 1 5 5 − 4 2 + 7 13. 011 − 9  =  − 10 1 101 0 = 1 − 10 1  − 0 = 10 9 14. Let  = 1 − , so  = − and  = −. When  = 0,  = 1; when  = 1,  = 0. Thus, 01(1 − )9  = 10 9(−) = 01 9  = 10 1 101 0 = 10 1 (1 − 0) = 10 1 . 15. 19 √ − 22  = 19(−12 − 2) = 212 − 29 1 = (6 − 81) − (2 − 1) = −76 16. 01 (√4  + 1)2  = 01(12 + 214 + 1) =  2 332 + 8 554 + 1 0 =  2 3 + 8 5 + 1 − 0 = 49 15 17. Let  = 2 + 1, so  = 2  and   = 1 2 . When  = 0,  = 1; when  = 1,  = 2. Thus, 01 (2 + 1)5  = 12 5 1 2  = 1 2 1 662 1 = 12 1 (64 − 1) = 63 12 = 21 4 . 18. Let  = 1 + 3, so  = 32  and 2  = 1 3 . When  = 0,  = 1; when  = 2,  = 9. Thus, 02 21 + 3  = 19 12 1 3  = 1 3 2 3329 1 = 2 9(27 − 1) = 52 9 . 19. 15 ( −4)2 does not exist because the function () = ( −14)2 has an infinite discontinuity at  = 4; that is,  is discontinuous on the interval [15]. 20. Let  = 3, so  = 3 . When  = 0,  = 1; when  = 1,  = 3. Thus, 01 sin(3) = 03 sin31  = 31 −cos3 0 = −31(−1 − 1) = 32 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.56 ¤ CHAPTER 5 INTEGRALS 21. Let  = 3, so  = 32 . When  = 0,  = 0; when  = 1,  = 1. Thus, 01 2 cos(3) = 01 cos   1 3  = 1 3 sin1 0 = 1 3(sin 1 − 0) = 1 3 sin 1. 22. −11 1 + sin2  = 0 by Theorem 5.5.7(b), since () = 1 + sin2 is an odd function. 23. − 44 2 + cos 4 tan  = 0 by Theorem 5.5.7(b), since () = 2 + cos 4 tan is an odd function. 24. Let  = , so  =   When  = 0  = 1; when  = 1  = . Thus, 01 1 +2  = 1 1 +12  = arctan 1 = arctan − arctan 1 = arctan − 4 . 25.  1 − 2  =  1 − 12  =  12 − 2 + 1  = −1 − 2ln|| +  +  26. 110 2− 4  does not exist because the function () = 2− 4 has an infinite discontinuity at  = 2; that is,  is discontinuous on the interval [110]. 27. Let  = 2 + 4. Then  = (2 + 4) = 2( + 2), so  √2+ 2 + 4  =  −12 1 2  = 1 2 · 212 +  = √ +  = 2 + 4 + . 28. Let  = 1 + cot. Then  = −csc2  , so  1 + cot csc2   =  1 (−) = −ln|| +  = −ln|1 + cot| + . 29. Let  = sin. Then  =  cos , so  sin cos  =   1  = 1 · 1 22 +  = 21(sin)2 + . 30. Let  = cos. Then  = −sin , so  sin cos(cos) = −  cos   = −sin +  = −sin(cos) + . 31. Let  = √. Then  =  2√, so  √√  = 2   = 2 +  = 2√ + . 32. Let  = ln. Then  = 1  , so  sin(ln  )  =  sin  = −cos  +  = −cos(ln) + . 33. Let  = ln(cos). Then  = −sin cos  = −tan , so  tan ln(cos) = −    = − 1 22 +  = − 1 2[ln(cos )]2 + . 34. Let  = 2. Then  = 2 , so  √1− 4  = 12  √1 − 2 = 1 2 sin−1 +  = 1 2 sin−12 + . 35. Let  = 1 + 4. Then  = 43 , so  1 +34  = 14  1  = 1 4 ln|| +  = 1 4 ln1 + 4 + . 36. Let  = 1 + 4. Then  = 4, so  sinh(1 + 4) = 1 4  sinh  = 1 4 cosh +  = 1 4 cosh(1 + 4) + . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 REVIEW ¤ 57 37. Let  = 1 + sec. Then  = sec tan , so  sec 1 + sec  tan  =  1 + sec 1  (sec tan ) =  1  = ln|| +  = ln|1 + sec| + . 38. Let  = 1 + tan, so  = sec2  . When  = 0,  = 1; when  = 4 ,  = 2. Thus, 04(1 + tan)3 sec2   = 12 3  =  1 442 1 = 1 424 − 14 = 1 4(16 − 1) = 15 4 . 39. Since 2 − 4  0 for 0 ≤   2 and 2 − 4  0 for 2   ≤ 3, we have  2 − 4  = −(2 − 4) = 4 − 2 for 0 ≤   2 and  2 − 4  = 2 − 4 for 2   ≤ 3. Thus, 03  2 − 4   = 02(4 − 2) + 23(2 − 4) = 4 − 33 2 0 + 33 − 43 2 = 8 − 8 3 − 0 + (9 − 12) −  8 3 − 8 = 16 3 − 3 + 16 3 = 32 3 − 9 3 = 23 3 40. Since √ − 1  0 for 0 ≤   1 and √ − 1  0 for 1   ≤ 4, we have   √ − 1   = − √ − 1 = 1 − √ for 0 ≤   1 and  √ − 1   = √ − 1 for 1   ≤ 4. Thus, 04   √ − 1    = 01 1 − √   + 14 √ − 1  =  − 2 3321 0 +  2 332 − 4 1 = 1 − 2 3 − 0 +  16 3 − 4 −  2 3 − 1 = 1 3 + 16 3 − 4 + 1 3 = 6 − 4 = 2 41. Let  = 1 + sin. Then  = cos , so  √cos 1 + sin   =  −12  = 212 +  = 2√1 + sin + . 42. Let  = 2 + 1. Then 2 =  − 1 and   = 1 2 , so  √23+ 1  =  (√−1)  1 2  = 12  (12 − −12) = 1 2  2 332 − 212 +  = 1 3(2 + 1)32 − (2 + 1)12 +  = 1 3 (2 + 1)12 (2 + 1) − 3 +  = 1 3√2 + 1 (2 − 2) +  43. From the graph, it appears that the area under the curve  =  √ between  = 0 and  = 4 is somewhat less than half the area of an 8 × 4 rectangle, so perhaps about 13 or 14. To find the exact value, we evaluate 04  √  = 04 32  =  2 5524 0 = 2 5(4)52 = 64 5 = 128. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.58 ¤ CHAPTER 5 INTEGRALS 44. From the graph, it seems as though 02 cos2  sin  is equal to 0. To evaluate the integral, let  = cos ⇒  = −sin . Thus,  = 11 2 (−) = 0. 45. () = 0 1 +23  ⇒  0() =   0 1 +23  = 1 +23 46. () = 1√ + sin  = − 1 √ + sin  ⇒  0() = −  1√ + sin  = −√ + sin 47. Let  = 4. Then   = 43. Also,   =    , so 0() =   04 cos(2) =   0 cos(2) ·   = cos(2)   = 43 cos(8). 48. Let  = sin Then   = cos Also,   =     so 0() =   1sin  1 1 +−  2 4  =   1 1 1 +−  2 4  ·   = 11 + − 2 4 ·   = 11 + sin − sin2 4   · cos = 1 + sin cos3 4  49.  = √   = √1   + 1   = − 1√   + 1   ⇒   = −  1√   +   1  . Let  = √. Then   1√   =   1   =   1    =  · 2√1  = √√ · 2√1  = 2√ , so   = −  √ 2 +   = 2 − √ 2 . 50.  = 23+1 sin4 = 20 sin4  + 03+1 sin4  = 03+1 sin4  − 02 sin4  ⇒ 0 = sin(3 + 1)4 ·   (3 + 1) − sin(2)4 ·   (2) = 3 sin(3 + 1)4 − 2sin(2)4 51. If 1 ≤  ≤ 3, then √12 + 3 ≤ √2 + 3 ≤ √32 + 3 ⇒ 2 ≤ √2 + 3 ≤ 2√3, so 2(3 − 1) ≤ 13 √2 + 3 ≤ 2√3(3 − 1); that is, 4 ≤ 13 √2 + 3 ≤ 4√3. 52. If 3 ≤  ≤ 5, then 4 ≤  + 1 ≤ 6 and 1 6 ≤ 1  + 1 ≤ 1 4, so 1 6 (5 − 3) ≤ 35  + 1 1  ≤ 14(5 − 3); that is, 1 3 ≤ 35  + 1 1  ≤ 12. 53. 0 ≤  ≤ 1 ⇒ 0 ≤ cos  ≤ 1 ⇒ 2 cos ≤ 2 ⇒ 01 2 cos   ≤ 01 2  = 1 3 31 0 = 1 3 [Property 7]. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 REVIEW ¤ 59 54. On the interval 4  2 ,  is increasing and sin is decreasing, so sin is decreasing. Therefore, the largest value of sin on 4  2  is sin(  44) = √ 242 = 2√ 2. By Property 8 with  = 2√ 2 we get   42 sin  ≤ 2√ 2 2 − 4  = √22. 55. cos ≤ 1 ⇒  cos ≤  ⇒ 01  cos  ≤ 01   = []1 0 =  − 1 56. For 0 ≤  ≤ 1, 0 ≤ sin−1  ≤ 2 , so 01 sin−1   ≤ 01  2   =  4 21 0 = 4 . 57. ∆ = (3 − 0)6 = 1 2, so the endpoints are 0, 1 2, 1, 3 2, 2, 5 2, and 3, and the midpoints are 1 4, 3 4, 5 4, 7 4, 9 4, and 11 4 . The Midpoint Rule gives 03 sin(3) ≈ 6 =1 ()∆ = 1 2 sin 1 4 3 + sin 3 4 3 + sin 5 4 3 + sin 7 4 3 + sin 9 4 3 + sin 11 4 3 ≈ 0280981. 58. (a) Displacement = 052 −   =  1 33 − 1 225 0 = 125 3 − 25 2 = 175 6 = 2916 meters (b) Distance traveled = 05  2 −    = 05 |( − 1)|  = 01 − 2  + 152 −   =  1 22 − 1 331 0 +  1 33 − 1 225 1 = 1 2 − 1 3 − 0 +  125 3 − 25 2  −  1 3 − 1 2  = 177 6 = 295 meters 59. Note that () = 0(), where () = the number of barrels of oil consumed up to time . So, by the Net Change Theorem, 08 () = (8) − (0) represents the number of barrels of oil consumed from Jan. 1, 2000, through Jan. 1, 2008. 60. Distance covered = 050 () ≈ 5 = 505− 0[(05) + (15) + (25) + (35) + (45)] = 1(467 + 886 + 1022 + 1067 + 1081) = 4523 m 61. We use the Midpoint Rule with  = 6 and ∆ = 246− 0 = 4. The increase in the bee population was 024 () ≈ 6 = 4[(2) + (6) + (10) + (14) + (18) + (22)] ≈ 4[50 + 1000 + 7000 + 8550 + 1350 + 150] = 4(18,100) = 72,400 62. 1 = 1 2 = 1 2(2)(2) = 2, 2 = 1 2 = 1 2(1)(1) = 1 2, and since  = −√1 − 2 for 0 ≤  ≤ 1 represents a quarter-circle with radius 1, 3 = 1 42 = 1 4(1)2 = 4 . So −13 () = 1 − 2 − 3 = 2 − 1 2 − 4 = 1 4(6 − ) 63. Let  = 2 sin. Then  = 2 cos  and when  = 0,  = 0; when  = 2 ,  = 2. Thus, 02 (2 sin)cos  = 02 () 1 2  = 1 2 02 () = 1 2 02 () = 1 2(6) = 3. 64. (a)  is increasing on those intervals where 0 is positive. By the Fundamental Theorem of Calculus, 0() =   0 cos 2 2 = cos 2 2. This is positive when 2 2 is in the interval 2 − 1 2  2 + 1 2 ,  any integer. This implies that 2 − 1 2   2 2  2 + 1 2  ⇔ 0 ≤ ||  1 or √4 − 1  ||  √4 + 1,  any positive integer. So  is increasing on the intervals (−11), √3 √5, −√5 −√3, √73, −3 −√7,    . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.60 ¤ CHAPTER 5 INTEGRALS (b)  is concave upward on those intervals where 00  0. We differentiate 0 to find 00: 0() = cos 2 2 ⇒ 00() = −sin 2 2 2 · 2 = −sin 2 2. For   0, this is positive where (2 − 1)  2 2  2,  any positive integer ⇔ 2(2 − 1)    2√,  any positive integer. Since there is a factor of − in 00, the intervals of upward concavity for   0 are −2(2 + 1) −2√ ,  any nonnegative integer. That is,  is concave upward on −√20, √22, −√6 −2, √62√2,    . (c) From the graphs, we can determine that 0 cos 2 2  = 07 at  ≈ 076 and  ≈ 122. (d) The graphs of () and () have similar shapes, except that ’s flattens out near the origin, while ’s does not. Note that for   0,  is increasing where  is concave up, and  is decreasing where  is concave down. Similarly,  is increasing where  is concave down, and  is decreasing where  is concave up. For   0, these relationships are reversed; that is,  is increasing where  is concave down, and  is increasing where  is concave up. See Example 5.3.3 and Exercise 5.3.65 for a discussion of (). 65. Area under the curve  = sinh between  = 0 and  = 1 is equal to 1 ⇒ 01 sinh  = 1 ⇒ 1 cosh1 0 = 1 ⇒ 1(cosh − 1) = 1 ⇒ cosh − 1 =  ⇒ cosh =  + 1. From the graph, we get  = 0 and  ≈ 16161, but  = 0 isn’t a solution for this problem since the curve  = sinh becomes  = 0 and the area under it is 0. Thus,  ≈ 16161. 66. Both numerator and denominator approach 0 as  → 0, so we use l’Hospital’s Rule. (Note that we are differentiating with respect to , since that is the quantity which is changing.) We also use FTC1: lim →0 ( ) = lim →0  0 −(−)2(4)  √4 H = lim →0 −(−)2(4) √4 = −2(4) √4 67. Using FTC1, we differentiate both sides of the given equation, 1 () = ( − 1)2 + 1 −(), and get () = 2 + 2( − 1)2 + −() ⇒ ()(1 − −) = 2 + 2( − 1)2 ⇒ () = 2(2 − 1) 1 − − . 68. The second derivative is the derivative of the first derivative, so we’ll apply the Net Change Theorem with  = 0 1200() = 12(0)0() = 0(2) − 0(1) = 5 − 2 = 3. The other information is unnecessary. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 REVIEW ¤ 61 69. Let  = () and  =  0(). So 2 () 0() = 2(())   = 2 ( ( )) = [()]2 − [()]2. 70. Let () = 2 1 + 3 . Then  0(2) = lim →0 (2 + ) − (2) = lim →0 1 22+ 1 + 3 , and  0() = √1 + 3, so lim →0 1  22+ 1 + 3  =  0(2) = 1 + 23 = √9 = 3. 71. Let  = 1 − . Then  = −, so 01 (1 − ) = 10 ()(−) = 01 () = 01 (). 72. lim →∞ 1  1 9 + 2 9 + 3 9 + · · · +  9 = lim →∞ 1 − 0 =1   9 = 01 9  = 10 10 1 0 = 10 1 The limit is based on Riemann sums using right endpoints and subintervals of equal length. 73. The shaded region has area 01 () = 1 3. The integral 01 −1() gives the area of the unshaded region, which we know to be 1 − 1 3 = 2 3. So 01 −1() = 2 3. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.62 ¤ CHAPTER 5 INTEGRALS °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.PROBLEMS PLUS 1. Differentiating both sides of the equation sin = 02 () (using FTC1 and the Chain Rule for the right side) gives sin + cos = 2(2). Letting  = 2 so that (2) = (4), we obtain sin 2 + 2 cos 2 = 4(4), so (4) = 1 4(0 + 2 · 1) = 2 . 2. The area  under the curve  =  + 1 from  =  to  =  + 15 is given by () = +15  + 1  To find the minimum value of  we’ll differentiate  using FTC1 and set the derivative equal to 0. 0() =   +15  + 1  =   1  + 1  +   1+15  + 1  = −   1  + 1  +   1+15  + 1  = −  + 1 +  + 15 +  + 1 1 5 = 15 +  + 1 1 5 − 1 0() = 0 ⇔ 15 + 1  + 15 − 1  = 0 ⇔ 15( + 15) +  − ( + 15) = 0 ⇔ 152 + 225 − 15 = 0 multiply by 4 3  ⇔ 22 + 3 − 2 = 0 ⇔ (2 − 1)( + 2) = 0 ⇔  = 1 2 or  = −2 Since   0,  = 1 2 00() = − 1 ( + 15)2 + 1 2  0, so  1 2  = 122  + 1  =  1 22 + ln|| 2 12 = (2 + ln 2) −  1 8 − ln 2 = 15 8 + 2 ln 2 is the minimum value of . 3. For  = 04 (−2)4 , let  =  − 2 so that  =  + 2 and  = . Then  = −22( + 2)4  = −22 4  + −22 24  = 0 [by 5.5.7(b)] +204 (−2)4  = 2. 4. (a) From the graph of () = 2 − 2 3 , it appears that the areas are equal; that is, the area enclosed is independent of . (b) We first find the x-intercepts of the curve, to determine the limits of integration:  = 0 ⇔ 2 − 2 = 0 ⇔  = 0 or  = 2. Now we integrate the function between these limits to find the enclosed area:  = 02 2−3 2  = 13 2 − 1 332 0 = 13 (2)2 − 1 3(2)3 = 13 43 − 8 33 = 4 3, a constant. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 65 NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.66 ¤ CHAPTER 5 PROBLEMS PLUS (c) The vertices of the family of parabolas seem to determine a branch of a hyperbola. (d) For a particular , the vertex is the point where the maximum occurs. We have seen that the x-intercepts are 0 and 2, so by symmetry, the maximum occurs at  = , and its value is 2() − 2 3 = 1  . So we are interested in the curve consisting of all points of the form  1 ,   0. This is the part of the hyperbola  = 1 lying in the first quadrant. 5. () = 0() √1 + 1 3 , where () = 0cos [1 + sin(2)]. Using FTC1 and the Chain Rule (twice) we have  0() = 1 + [ 1()]3 0() = 1 + [ 1()]3 [1 + sin(cos2 )](−sin). Now  2  = 00 [1 + sin(2)]  = 0, so  0 2  = √1 + 0 1 (1 + sin 0)(−1) = 1 · 1 · (−1) = −1. 6. If () = 0 2 sin(2) = 2 0 sin(2), then  0() = 2 sin(2) + 2 0 sin(2), by the Product Rule and FTC1. 7. By l’Hospital’s Rule and the Fundamental Theorem, using the notation exp() = , lim →0 0(1 − tan 2)1   H = lim →0 (1 − tan 2)1 1 = explim →0 ln(1 −tan 2) H = explim →0 −1 2sec − tan 2 2 2 = exp−12−· 102  = −2 8. The area () = 0 sin(2), and the area () = 1 2 sin(2). Since lim →0+ () = 0 = lim →0+ (), we can use l’Hospital’s Rule: lim →0+ () () H = lim →0+ sin(2) 1 2 sin(2) + 1 2 [2cos(2)] [by FTC1 and the Product Rule] H = lim →0+ 2cos(2) cos(2) − 23 sin(2) + 2cos(2) = lim →0+ 3cos(2cos( 2) − 222)sin(2) = 3 −2 0 = 23 9. () = 2 +  − 2 = (− + 2)( + 1) = 0 ⇔  = 2 or  = −1. () ≥ 0 for  ∈ [−12] and ()  0 everywhere else. The integral (2 +  − 2) has a maximum on the interval where the integrand is positive, which is [−12]. So  = −1,  = 2. (Any larger interval gives a smaller integral since ()  0 outside [−12]. Any smaller interval also gives a smaller integral since () ≥ 0 in [−1 2].) 10. This sum can be interpreted as a Riemann sum, with the right endpoints of the subintervals as sample points and with  = 0,  = 10,000, and () = √. So we approximate 10,000  =1 √ ≈ lim →∞ 10,000   =1  10,000   = 010000 √  =  2 3 3210 0 ,000 = 2 3(1,000,000) ≈ 666,667. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 PROBLEMS PLUS ¤ 67 Alternate method: We can use graphical methods as follows: From the figure we see that −1 √   √  +1 √ , so 010,000 √   10000   =1 √  110001 √ . Since  √  = 2 332 + , we get 010,000 √  = 666,6666 and 110001 √  = 2 3[(10,001)32 − 1] ≈ 666,766. Hence, 666,6666  10000   =1 √  666,766. We can estimate the sum by averaging these bounds: 10,000   =1 ≈ 666,6666 + 666,766 2 ≈ 666,716. The actual value is about 666,71646. 11. (a) We can split the integral 0 [[]] into the sum  =1 −1 [[]] . But on each of the intervals [ − 1 ) of integration, [[]] is a constant function, namely  − 1. So the ith integral in the sum is equal to ( − 1)[ − ( − 1)] = ( − 1). So the original integral is equal to  =1 ( − 1) = −1   =1  = ( − 1) 2 . (b) We can write  [[]] = 0 [[]]  − 0 [[]] . Now 0 [[]]  = 0[[]] [[]] + [[]] [[]]. The first of these integrals is equal to 1 2([[]] − 1)[[]], by part (a), and since [[]] = [[]] on [[[]]  ], the second integral is just [[]]( − [[]]). So 0 [[]] = 1 2([[]] − 1)[[]] + [[]]( − [[]]) = 1 2 [[]](2 − [[]] − 1) and similarly 0 [[]]  = 1 2 [[]] (2 − [[]] − 1). Therefore,  [[]] = 1 2 [[]] (2 − [[]] − 1) − 1 2 [[]] (2 − [[]] − 1). 12. By FTC1,   01sin  1 + 4  = 1sin  1 + 4 . Again using FTC1, 2 2 01sin  1 + 4  =   1sin  1 + 4  = 1 + sin4 cos. 13. Let () = 0 () =  + 2 2 + 3 3 + 44 0 =  + 2 2 + 3 3 + 44. Then (0) = 0, and (1) = 0 by the given condition,  +  2 +  3 +  4 = 0. Also, 0() = () =  +  + 2 + 3 by FTC1. By Rolle’s Theorem, applied to  on [01], there is a number  in (01) such that 0() = 0, that is, such that () = 0. Thus, the equation () = 0 has a root between 0 and 1. More generally, if  () = 0 + 1 + 22 + · · · +  and if 0 + 1 2 + 2 3 + · · · +   + 1 = 0 then the equation  () = 0 has a root between 0 and 1 The proof is the same as before: Let () = 0 () = 0 + 21 2 + 32 3 + · · · + + 1  . Then (0) = (1) = 0 and 0() = (). By Rolle’s Theorem applied to  on [0 1], there is a number  in (01) such that 0() = 0, that is, such that () = 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.68 ¤ CHAPTER 5 PROBLEMS PLUS 14. Let  be the distance between the center of the disk and the surface of the liquid. The wetted circular region has area 2 − 2 while the unexposed wetted region (shaded in the diagram) has area 2 √2 − 2 , so the exposed wetted region has area () = 2 − 2 − 2 √2 − 2 , 0 ≤  ≤ . By FTC1, we have 0() = −2 + 2√2 − 2. Now 0()  0 ⇒ −2 + 2√2 − 2  0 ⇒ √2 − 2   ⇒ 2 − 2  22 ⇒ 2  22 + 2 ⇒ 2  2(2 + 1) ⇒ 2  2 2 + 1 ⇒    √2 + 1, and we’ll call this value *. Since 0()  0 for 0    * and 0()  0 for *   , we have an absolute maximum when  = *. 15. Note that   0 0 ()  = 0 () by FTC1, while   0 ()( − ) =    0 () −   0 ()  = 0 () + () − () = 0 () Hence, 0 ()( − ) = 0 0 ()  + . Setting  = 0 gives  = 0. 16. The parabola  = 4 − 2 and the line  =  + 2 intersect when 4 − 2 =  + 2 ⇔ 2 +  − 2 = 0 ⇔ ( + 2)( − 1) = 0 ⇔  = −2 or 1. So the point A is (−20) and B is (13). The slope of the line  =  + 2 is 1 and the slope of the parabola  = 4 − 2 at -coordinate  is −2. These slopes are equal when  = − 1 2, so the point C is − 1 2 15 4 . The area 1 of the parabolic segment is the area under the parabola from  = −2 to  = 1, minus the area under the line  =  + 2 from −2 to 1. Thus, 1 = −12(4 − 2) − −12( + 2) = 4 − 1 331 −2 −  1 22 + 21 −2 = 4 − 1 3  − −8 + 8 3  −  1 2 + 2 − (2 − 4) = 9 − 9 2 = 9 2 The area 2 of the inscribed triangle is the area under the line segment AC plus the area under the line segment CB minus the area under the line segment AB. The line through A and C has slope 154 − 0 −12 + 2 = 5 2 and equation  − 0 = 5 2( + 2), or  = 5 2 + 5. The line through C and B has slope 3 − 154 1 + 12 = − 1 2 and equation  − 3 = − 1 2( − 1), or  = − 1 2 + 7 2. Thus, 2 = −−212  5 2 + 5  + −112 − 1 2 + 7 2   − −12( + 2) =  5 42 + 5− −1 22 + − 1 42 + 7 21 −12 − 9 2 =  16 5 − 5 2  − (5 − 10) + − 1 4 + 7 2  − − 16 1 − 7 4  − 9 2 = 45 16 + 81 16 − 72 16 = 54 16 = 27 8 Archimedes’ result states that 1 = 4 32 which is verified in this case since 4 3 · 27 8 = 9 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 PROBLEMS PLUS ¤ 69 17. Let  be the nonzero -intercept so that the parabola has equation () = ( − ), or  = 2 − , where   0. The area  under the parabola is  = 0 ( − ) =  0 (2 − ) =  1 3 3 − 1 2 2 0 =  1 3 3 − 1 2 3 = − 1 6 3 The point ( ) is on the parabola, so () =  ⇒  = ( − ) ⇒  =  ( − ). Substituting for  in  gives () = −6 ·  −3  ⇒ 0() = −  6 · ( − )(32) − 3(−1) ( − )2 = −  6 · 2[3( − ) + ] ( − )2 = − 2(3 − 2) 6( − )2 Now 0 = 0 ⇒  = 3 2 . Since 0()  0 for     3 2  and 0()  0 for   3 2 , so  has an absolute minimum when  = 3 2 . Substituting for  in  gives us  =   − 3 2  = − 2 2 , so () = −22  − 3 2 , or () = −2 2 2 + 3 . Note that the vertex of the parabola is  3 4  9 8  and the minimal area under the parabola is  3 2  = 9 8 . 18. We restrict our attention to the triangle shown. A point in this triangle is closer to the side shown than to any other side, so if we find the area of the region  consisting of all points in the triangle that are closer to the center than to that side, we can multiply this area by 4 to find the total area. We find the equation of the set of points which are equidistant from the center and the side: the distance of the point ( ) from the side is 1 − , and its distance from the center is 2 + 2. So the distances are equal if 2 + 2 = 1 −  ⇔ 2 + 2 = 1 − 2 + 2 ⇔  = 1 2(1 − 2). Note that the area we are interested in is equal to the area of a triangle plus a crescent-shaped area. To find these areas, we have to find the -coordinate  of the horizontal line separating them. From the diagram, 1 −  = √2 ⇔  = 1 1 + √2 = √2 − 1. We calculate the areas in terms of , and substitute afterward. The area of the triangle is 1 2(2)() = 2, and the area of the crescent-shaped section is −  1 2(1 − 2) −   = 20 1 2 −  − 1 2 2  = 2 1 2 −  − 1 6 3 0 =  − 22 − 1 3 3. So the area of the whole region is 4 − 22 − 1 3 3 + 2 = 41 −  − 1 3 2 = 4√2 − 11 − √2 − 1 − 1 3 √2 − 12 = 4√2 − 11 − 1 3 √2 = 4 3 4√2 − 5 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.70 ¤ CHAPTER 5 PROBLEMS PLUS 19. lim →∞√ √1 + 1 + √ √1 + 2 + · · · + √ √1 +  = lim →∞ 1   + 1  +  + 2  + · · · +  +   = lim →∞ 1  1 + 1 1  + 1 + 2 1  + · · · + √1 + 1 1  = lim →∞ 1    =1   where () = √1 + 1  = 01 √1 + 1   = 2√1 +  1 0 = 2√2 − 1 20. Note that the graphs of ( − )2 and [( − ) − 2]2 intersect when | − | = | −  − 2| ⇔  −  =  −  − 2 ⇔  =  + 1. The integration will proceed differently depending on the value of . Case 1: −2 ≤   −1 In this case, () = ( −  − 2)2 for  ∈ [01], so () = 01( −  − 2)2  = 1 3( −  − 2)31 0 = 1 3(− − 1)3 − (− − 2)3 = 1 3 (32 + 9 + 7) = 2 + 3 + 7 3 =  + 3 22 + 12 1 This is a parabola; its maximum value for −2 ≤   −1 is  (−2) = 1 3, and its minimum value is − 3 2 = 12 1 . Case 2: −1 ≤   0 In this case, () =  ( − )2 if 0 ≤  ≤  + 1 ( −  − 2)2 if  + 1   ≤ 1 Therefore, () = 01 () = 0+1( − )2  + 1+1( −  − 2)2  = 1 3 ( − )3 0+1 + 1 3( −  − 2)31 +1 = 1 31 + 3 + (− − 1)3 − (−1) = −2 −  + 1 3 = −  + 1 22 + 12 7 Again, this is a parabola, whose maximum value for −1 ≤   0 is − 1 2 = 12 7 , and whose minimum value on this -interval is (−1) = 1 3. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 5 PROBLEMS PLUS ¤ 71 Case 3: 0 ≤  ≤ 2 In this case, () = ( − )2 for  ∈ [01], so () = 01( − )2  = 1 3 ( − )31 0 = 1 3 (1 − )3 − (−)3 = 2 −  + 1 3 =  − 1 2 2 + 12 1 This parabola has a maximum value of (2) = 7 3 and a minimum value of  1 2  = 12 1 . We conclude that () has an absolute maximum value of (2) = 7 3, and absolute minimum values of − 3 2  =  1 2  = 12 1 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.72 ¤ CHAPTER 5 PROBLEMS PLUS °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved. [Show More]

Last updated: 1 year ago

Preview 1 out of 1 pages

Add to cart

Instant download

document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Add to cart

Instant download

Reviews( 0 )

$10.00

Add to cart

Instant download

Can't find what you want? Try our AI powered Search

OR

REQUEST DOCUMENT
52
0

Document information


Connected school, study & course


About the document


Uploaded On

Jan 06, 2020

Number of pages

1

Written in

Seller


seller-icon
Kirsch

Member since 4 years

905 Documents Sold


Additional information

This document has been written for:

Uploaded

Jan 06, 2020

Downloads

 0

Views

 52

Document Keyword Tags


$10.00
What is Browsegrades

In Browsegrades, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Browsegrades · High quality services·